These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 36195577)

  • 1. Dispersibility Characterization of Cellulose Nanocrystals in Polymeric-Based Composites.
    Li Z; Zhu G; Lin N
    Biomacromolecules; 2022 Nov; 23(11):4439-4468. PubMed ID: 36195577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface chemical functionalization of cellulose nanocrystals by 3-aminopropyltriethoxysilane.
    Khanjanzadeh H; Behrooz R; Bahramifar N; Gindl-Altmutter W; Bacher M; Edler M; Griesser T
    Int J Biol Macromol; 2018 Jan; 106():1288-1296. PubMed ID: 28855133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review on versatile applications of blends and composites of CNC with natural and synthetic polymers with mathematical modeling.
    Younas M; Noreen A; Sharif A; Majeed A; Hassan A; Tabasum S; Mohammadi A; Zia KM
    Int J Biol Macromol; 2019 Mar; 124():591-626. PubMed ID: 30447361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Making Nanocomposites of Hydrophilic and Hydrophobic Polymers Using Gas-Responsive Cellulose Nanocrystals.
    Farnia F; Fan W; Dory Y; Zhao Y
    Macromol Rapid Commun; 2019 Jun; 40(12):e1900114. PubMed ID: 30968513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymer-grafted cellulose nanocrystals as pH-responsive reversible flocculants.
    Kan KH; Li J; Wijesekera K; Cranston ED
    Biomacromolecules; 2013 Sep; 14(9):3130-9. PubMed ID: 23865631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymer Nanocomposites with Cellulose Nanocrystals Featuring Adaptive Surface Groups.
    Natterodt JC; Sapkota J; Foster EJ; Weder C
    Biomacromolecules; 2017 Feb; 18(2):517-525. PubMed ID: 28068070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acrylic Functionalization of Cellulose Nanocrystals with 2-Isocyanatoethyl Methacrylate and Formation of Composites with Poly(methyl methacrylate).
    Qu Z; Schueneman GT; Shofner ML; Meredith JC
    ACS Omega; 2020 Dec; 5(48):31092-31099. PubMed ID: 33324818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellulose nanocrystals (CNC) as carriers for a spirooxazine dye and its effect on photochromic efficiency.
    Sun B; Hou Q; He Z; Liu Z; Ni Y
    Carbohydr Polym; 2014 Oct; 111():419-24. PubMed ID: 25037370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stiffness-Changing of Polymer Nanocomposites with Cellulose Nanocrystals and Polymeric Dispersant.
    Meesorn W; Zoppe JO; Weder C
    Macromol Rapid Commun; 2019 May; 40(9):e1800910. PubMed ID: 30786085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strong Surface Treatment Effects on Reinforcement Efficiency in Biocomposites Based on Cellulose Nanocrystals in Poly(vinyl acetate) Matrix.
    Ansari F; Salajková M; Zhou Q; Berglund LA
    Biomacromolecules; 2015 Dec; 16(12):3916-24. PubMed ID: 26505077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellulose nanocrystals based delivery vehicles for anticancer agent curcumin.
    Kumar R; Chauhan S
    Int J Biol Macromol; 2022 Nov; 221():842-864. PubMed ID: 36100000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Click chemistry-induced modification of acrylated cellulose nanocrystals for application in PVA-based nanocomposites.
    Fan J; Fan X; Guo Y; Wang Y; Xiao Z; Wang H; Liang D; Xie Y
    Carbohydr Polym; 2022 Dec; 297():120031. PubMed ID: 36184176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellulose Nanocrystal (CNC)-Latex Nanocomposites: Effect of CNC Hydrophilicity and Charge on Rheological, Mechanical, and Adhesive Properties.
    Pakdel AS; Niinivaara E; Cranston ED; Berry RM; Dubé MA
    Macromol Rapid Commun; 2021 Feb; 42(3):e2000448. PubMed ID: 33047439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Hydrophilicity and Mechanical Properties of Nanocomposite Membranes with Cellulose Nanocrystals and Carbon Nanotubes.
    Bai L; Bossa N; Qu F; Winglee J; Li G; Sun K; Liang H; Wiesner MR
    Environ Sci Technol; 2017 Jan; 51(1):253-262. PubMed ID: 27958716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of crystal orientation on cellulose nanocrystals-cellulose acetate nanocomposite fibers prepared by dry spinning.
    Chen S; Schueneman G; Pipes RB; Youngblood J; Moon RJ
    Biomacromolecules; 2014 Oct; 15(10):3827-35. PubMed ID: 25226382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modification of cellulose nanocrystal via SI-ATRP of styrene and the mechanism of its reinforcement of polymethylmethacrylate.
    Yin Y; Tian X; Jiang X; Wang H; Gao W
    Carbohydr Polym; 2016 May; 142():206-12. PubMed ID: 26917392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and fabrication strategies of cellulose nanocrystal-based hydrogel and its highlighted application using 3D printing: A review.
    He X; Lu Q
    Carbohydr Polym; 2023 Feb; 301(Pt B):120351. PubMed ID: 36446511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellulose nanocrystals reinforced environmentally-friendly waterborne polyurethane nanocomposites.
    Santamaria-Echart A; Ugarte L; García-Astrain C; Arbelaiz A; Corcuera MA; Eceiza A
    Carbohydr Polym; 2016 Oct; 151():1203-1209. PubMed ID: 27474671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anisotropic polymer composites synthesized by immobilizing cellulose nanocrystal suspensions specifically oriented under magnetic fields.
    Tatsumi M; Kimura F; Kimura T; Teramoto Y; Nishio Y
    Biomacromolecules; 2014 Dec; 15(12):4579-89. PubMed ID: 25390070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CaCO
    Nakao Y; Sugimura K; Nishio Y
    Int J Biol Macromol; 2019 Dec; 141():783-791. PubMed ID: 31499114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.