BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 36195597)

  • 1. Expression strategies for the efficient synthesis of antimicrobial peptides in plastids.
    Hoelscher MP; Forner J; Calderone S; Krämer C; Taylor Z; Loiacono FV; Agrawal S; Karcher D; Moratti F; Kroop X; Bock R
    Nat Commun; 2022 Oct; 13(1):5856. PubMed ID: 36195597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Making plants into cost-effective bioreactors for highly active antimicrobial peptides.
    Ghidey M; Islam SMA; Pruett G; Kearney CM
    N Biotechnol; 2020 May; 56():63-70. PubMed ID: 31812667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient in planta production of amidated antimicrobial peptides that are active against drug-resistant ESKAPE pathogens.
    Chaudhary S; Ali Z; Tehseen M; Haney EF; Pantoja-Angles A; Alshehri S; Wang T; Clancy GJ; Ayach M; Hauser C; Hong PY; Hamdan SM; Hancock REW; Mahfouz M
    Nat Commun; 2023 Mar; 14(1):1464. PubMed ID: 36928189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression and characterization of antimicrobial peptides Retrocyclin-101 and Protegrin-1 in chloroplasts to control viral and bacterial infections.
    Lee SB; Li B; Jin S; Daniell H
    Plant Biotechnol J; 2011 Jan; 9(1):100-15. PubMed ID: 20553419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antimicrobial peptides from Bacillus spp. and strategies to enhance their yield.
    Puan SL; Erriah P; Baharudin MMA; Yahaya NM; Kamil WNIWA; Ali MSM; Ahmad SA; Oslan SN; Lim S; Sabri S
    Appl Microbiol Biotechnol; 2023 Sep; 107(18):5569-5593. PubMed ID: 37450018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent achievements and perspectives for large-scale recombinant production of antimicrobial peptides.
    Wibowo D; Zhao CX
    Appl Microbiol Biotechnol; 2019 Jan; 103(2):659-671. PubMed ID: 30470869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antimicrobial peptides, conventional antibiotics, and their synergistic utility for the treatment of drug-resistant infections.
    Zhu Y; Hao W; Wang X; Ouyang J; Deng X; Yu H; Wang Y
    Med Res Rev; 2022 Jul; 42(4):1377-1422. PubMed ID: 34984699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of human mast cells by retrocyclin and protegrin highlight their immunomodulatory and antimicrobial properties.
    Gupta K; Kotian A; Subramanian H; Daniell H; Ali H
    Oncotarget; 2015 Oct; 6(30):28573-87. PubMed ID: 26378047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological Functions and Applications of Antimicrobial Peptides.
    Wang L; Qu L; Lin S; Yang Q; Zhang X; Jin L; Dong H; Sun D
    Curr Protein Pept Sci; 2022; 23(4):226-247. PubMed ID: 35598243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and production of a novel antimicrobial fusion protein in Escherichia coli.
    Sun B; Wibowo D; Sainsbury F; Zhao CX
    Appl Microbiol Biotechnol; 2018 Oct; 102(20):8763-8772. PubMed ID: 30120526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antimicrobial peptides (AMPs): A promising class of antimicrobial compounds.
    Erdem Büyükkiraz M; Kesmen Z
    J Appl Microbiol; 2022 Mar; 132(3):1573-1596. PubMed ID: 34606679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PTPAMP: prediction tool for plant-derived antimicrobial peptides.
    Jaiswal M; Singh A; Kumar S
    Amino Acids; 2023 Jan; 55(1):1-17. PubMed ID: 35864258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of Antimicrobial Peptides: Antimicrobial, Anti-Inflammatory and Antibiofilm Activities.
    Luo Y; Song Y
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34768832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fish antimicrobial peptides (AMP's) as essential and promising molecular therapeutic agents: A review.
    Shabir U; Ali S; Magray AR; Ganai BA; Firdous P; Hassan T; Nazir R
    Microb Pathog; 2018 Jan; 114():50-56. PubMed ID: 29180291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peptide Design Principles for Antimicrobial Applications.
    Torres MDT; Sothiselvam S; Lu TK; de la Fuente-Nunez C
    J Mol Biol; 2019 Aug; 431(18):3547-3567. PubMed ID: 30611750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antimicrobial peptides: Sustainable application informed by evolutionary constraints.
    Chen X; Han J; Cai X; Wang S
    Biotechnol Adv; 2022 Nov; 60():108012. PubMed ID: 35752270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plant derived antimicrobial peptides: Mechanism of target, isolation techniques, sources and pharmaceutical applications.
    Sharma P; Kaur J; Sharma G; Kashyap P
    J Food Biochem; 2022 Oct; 46(10):e14348. PubMed ID: 35945701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antimicrobial peptides of the genus Bacillus: a new era for antibiotics.
    Sumi CD; Yang BW; Yeo IC; Hahm YT
    Can J Microbiol; 2015 Feb; 61(2):93-103. PubMed ID: 25629960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strategies for improving antimicrobial peptide production.
    Deo S; Turton KL; Kainth T; Kumar A; Wieden HJ
    Biotechnol Adv; 2022 Oct; 59():107968. PubMed ID: 35489657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antimicrobial Peptides and Macromolecules for Combating Microbial Infections: From Agents to Interfaces.
    Yu L; Li K; Zhang J; Jin H; Saleem A; Song Q; Jia Q; Li P
    ACS Appl Bio Mater; 2022 Feb; 5(2):366-393. PubMed ID: 35072444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.