These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 36195626)
1. Predictive control of selective secondary alcohol oxidation of glycerol on NiOOH. Goetz MK; Bender MT; Choi KS Nat Commun; 2022 Oct; 13(1):5848. PubMed ID: 36195626 [TBL] [Abstract][Full Text] [Related]
2. Selective Photoelectrocatalytic Glycerol Oxidation to Dihydroxyacetone via Enhanced Middle Hydroxyl Adsorption over a Bi Luo L; Chen W; Xu SM; Yang J; Li M; Zhou H; Xu M; Shao M; Kong X; Li Z; Duan H J Am Chem Soc; 2022 May; 144(17):7720-7730. PubMed ID: 35352954 [TBL] [Abstract][Full Text] [Related]
3. Solar-driven highly selective conversion of glycerol to dihydroxyacetone using surface atom engineered BiVO Lu Y; Lee BG; Lin C; Liu TK; Wang Z; Miao J; Oh SH; Kim KC; Zhang K; Park JH Nat Commun; 2024 Jun; 15(1):5475. PubMed ID: 38942757 [TBL] [Abstract][Full Text] [Related]
4. Electrochemical Oxidation of HMF via Hydrogen Atom Transfer and Hydride Transfer on NiOOH and the Impact of NiOOH Composition. Bender MT; Choi KS ChemSusChem; 2022 Jul; 15(13):e202200675. PubMed ID: 35522224 [TBL] [Abstract][Full Text] [Related]
5. Unraveling Two Pathways for Electrochemical Alcohol and Aldehyde Oxidation on NiOOH. Bender MT; Lam YC; Hammes-Schiffer S; Choi KS J Am Chem Soc; 2020 Dec; 142(51):21538-21547. PubMed ID: 33320654 [TBL] [Abstract][Full Text] [Related]
6. Electrochemical Dehydrogenation Pathways of Amines to Nitriles on NiOOH. Bender MT; Choi KS JACS Au; 2022 May; 2(5):1169-1180. PubMed ID: 35647590 [TBL] [Abstract][Full Text] [Related]
7. Understanding the Oxidative Properties of Nickel Oxyhydroxide in Alcohol Oxidation Reactions. Laan PCM; de Zwart FJ; Wilson EM; Troglia A; Lugier OCM; Geels NJ; Bliem R; Reek JNH; de Bruin B; Rothenberg G; Yan N ACS Catal; 2023 Jul; 13(13):8467-8476. PubMed ID: 37441234 [TBL] [Abstract][Full Text] [Related]
8. Dihydroxyacetone production from glycerol using Gluconobacter oxydans: Study of medium composition and operational conditions in shaken flasks. de la Morena S; Acedos MG; Santos VE; García-Ochoa F Biotechnol Prog; 2019 Jul; 35(4):e2803. PubMed ID: 30840359 [TBL] [Abstract][Full Text] [Related]
9. Biosynthesis of Au/CuO catalyst with Yuan Z; Liu H; Wang Y; Ke Y Nanotechnology; 2023 Jun; 34(36):. PubMed ID: 37307796 [TBL] [Abstract][Full Text] [Related]
10. Application of immobilized cell preparation obtained from biomass of Gluconacetobacter xylinus bacteria in biotransformation of glycerol to dihydroxyacetone. Stasiak-Różańska L; Błażejak S; Miklaszewska A Acta Sci Pol Technol Aliment; 2011; 10(1):35-49. PubMed ID: 22232527 [TBL] [Abstract][Full Text] [Related]
11. A new model for the anaerobic fermentation of glycerol in enteric bacteria: trunk and auxiliary pathways in Escherichia coli. Gonzalez R; Murarka A; Dharmadi Y; Yazdani SS Metab Eng; 2008 Sep; 10(5):234-45. PubMed ID: 18632294 [TBL] [Abstract][Full Text] [Related]
12. Understanding and harnessing the microaerobic metabolism of glycerol in Escherichia coli. Durnin G; Clomburg J; Yeates Z; Alvarez PJ; Zygourakis K; Campbell P; Gonzalez R Biotechnol Bioeng; 2009 May; 103(1):148-61. PubMed ID: 19189409 [TBL] [Abstract][Full Text] [Related]
13. Analysis of glycerol and dihydroxyacetone metabolism in Enterococcus faecium. Staerck C; Wasselin V; Budin-Verneuil A; Rincé I; Cacaci M; Weigel M; Giraud C; Hain T; Hartke A; Riboulet-Bisson E FEMS Microbiol Lett; 2021 May; 368(8):. PubMed ID: 33864460 [TBL] [Abstract][Full Text] [Related]
14. Dihydroxyacetone metabolism in Salinibacter ruber and in Haloquadratum walsbyi. Elevi Bardavid R; Oren A Extremophiles; 2008 Jan; 12(1):125-31. PubMed ID: 17938852 [TBL] [Abstract][Full Text] [Related]
15. Selective photoelectrochemical oxidation of glycerol to high value-added dihydroxyacetone. Liu D; Liu JC; Cai W; Ma J; Yang HB; Xiao H; Li J; Xiong Y; Huang Y; Liu B Nat Commun; 2019 Apr; 10(1):1779. PubMed ID: 30992441 [TBL] [Abstract][Full Text] [Related]
16. Metal-Free Oxidation of Glycerol over Nitrogen-Containing Carbon Nanotubes. Gupta N; Khavryuchenko O; Villa A; Su D ChemSusChem; 2017 Aug; 10(15):3030-3034. PubMed ID: 28654724 [TBL] [Abstract][Full Text] [Related]
17. Redirection of the central metabolism of Klebsiella pneumoniae towards dihydroxyacetone production. Sun S; Wang Y; Shu L; Lu X; Wang Q; Zhu C; Shi J; Lye GJ; Baganz F; Hao J Microb Cell Fact; 2021 Jun; 20(1):123. PubMed ID: 34187467 [TBL] [Abstract][Full Text] [Related]
18. Biotransformation of glycerol to dihydroxyacetone by recombinant Gluconobacter oxydans DSM 2343. Gätgens C; Degner U; Bringer-Meyer S; Herrmann U Appl Microbiol Biotechnol; 2007 Sep; 76(3):553-9. PubMed ID: 17497148 [TBL] [Abstract][Full Text] [Related]
19. Selective oxidation of glycerol to 1,3-dihydroxyacetone by covalently immobilized glycerol dehydrogenases with higher stability and lower product inhibition. Rocha-Martin J; Acosta A; Berenguer J; Guisan JM; Lopez-Gallego F Bioresour Technol; 2014 Oct; 170():445-453. PubMed ID: 25164336 [TBL] [Abstract][Full Text] [Related]