BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 36195950)

  • 1. Accuracy and comparison of sensor-based gait speed estimations under standardized and daily life conditions in children undergoing rehabilitation.
    Rast FM; Aschwanden S; Werner C; Demkó L; Labruyère R
    J Neuroeng Rehabil; 2022 Oct; 19(1):105. PubMed ID: 36195950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accuracy of Sensor-Based Measurement of Clinically Relevant Motor Activities in Daily Life of Children With Mobility Impairments.
    Rast FM; Jucker F; Labruyère R
    Arch Phys Med Rehabil; 2024 Jan; 105(1):27-33. PubMed ID: 37329967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Data-driven characterization of walking after a spinal cord injury using inertial sensors.
    Werner C; Gönel M; Lerch I; Curt A; Demkó L
    J Neuroeng Rehabil; 2023 Apr; 20(1):55. PubMed ID: 37120519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beyond gait speed: exploring the added value of Inertial Measurement Unit-based measurements of gait in the estimation of the walking ability in daily life.
    Felius RAW; Wouda NC; Geerars M; Bruijn SM; van Dieën JH; Punt M
    BMC Neurol; 2024 Apr; 24(1):129. PubMed ID: 38627674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Algorithms for Walking Speed Estimation Using a Lower-Back-Worn Inertial Sensor: A Cross-Validation on Speed Ranges.
    Soltani A; Aminian K; Mazza C; Cereatti A; Palmerini L; Bonci T; Paraschiv-Ionescu A
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1955-1964. PubMed ID: 34506286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validity and reliability of a commercial wearable sensor system for measuring spatiotemporal gait parameters in a post-stroke population: the effects of walking speed and asymmetry.
    Lanotte F; Shin SY; O'Brien MK; Jayaraman A
    Physiol Meas; 2023 Aug; 44(8):. PubMed ID: 37557187
    [No Abstract]   [Full Text] [Related]  

  • 7. Gait event detection in laboratory and real life settings: Accuracy of ankle and waist sensor based methods.
    Storm FA; Buckley CJ; Mazzà C
    Gait Posture; 2016 Oct; 50():42-46. PubMed ID: 27567451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of ground reaction forces and ankle moment with multiple, low-cost sensors.
    Jacobs DA; Ferris DP
    J Neuroeng Rehabil; 2015 Oct; 12():90. PubMed ID: 26467753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous Digital Monitoring of Walking Speed in Frail Elderly Patients: Noninterventional Validation Study and Longitudinal Clinical Trial.
    Mueller A; Hoefling HA; Muaremi A; Praestgaard J; Walsh LC; Bunte O; Huber RM; Fürmetz J; Keppler AM; Schieker M; Böcker W; Roubenoff R; Brachat S; Rooks DS; Clay I
    JMIR Mhealth Uhealth; 2019 Nov; 7(11):e15191. PubMed ID: 31774406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanically assisted walking training for walking, participation, and quality of life in children with cerebral palsy.
    Chiu HC; Ada L; Bania TA
    Cochrane Database Syst Rev; 2020 Nov; 11(11):CD013114. PubMed ID: 33202482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validity of Hip and Ankle Worn Actigraph Accelerometers for Measuring Steps as a Function of Gait Speed during Steady State Walking and Continuous Turning.
    Bezuidenhout L; Thurston C; Hagströmer M; Moulaee Conradsson D
    Sensors (Basel); 2021 May; 21(9):. PubMed ID: 34062943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robot-mediated overground gait training for transfemoral amputees with a powered bilateral hip orthosis: a pilot study.
    Sanz-Morère CB; Martini E; Meoni B; Arnetoli G; Giffone A; Doronzio S; Fanciullacci C; Parri A; Conti R; Giovacchini F; Friðriksson Þ; Romo D; Crea S; Molino-Lova R; Vitiello N
    J Neuroeng Rehabil; 2021 Jul; 18(1):111. PubMed ID: 34217307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement of walking speed and gait symmetry in older patients after hip arthroplasty: a prospective cohort study.
    Rapp W; Brauner T; Weber L; Grau S; Mündermann A; Horstmann T
    BMC Musculoskelet Disord; 2015 Oct; 16():291. PubMed ID: 26459628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing real-world gait with digital technology? Validation, insights and recommendations from the Mobilise-D consortium.
    Micó-Amigo ME; Bonci T; Paraschiv-Ionescu A; Ullrich M; Kirk C; Soltani A; Küderle A; Gazit E; Salis F; Alcock L; Aminian K; Becker C; Bertuletti S; Brown P; Buckley E; Cantu A; Carsin AE; Caruso M; Caulfield B; Cereatti A; Chiari L; D'Ascanio I; Eskofier B; Fernstad S; Froehlich M; Garcia-Aymerich J; Hansen C; Hausdorff JM; Hiden H; Hume E; Keogh A; Kluge F; Koch S; Maetzler W; Megaritis D; Mueller A; Niessen M; Palmerini L; Schwickert L; Scott K; Sharrack B; Sillén H; Singleton D; Vereijken B; Vogiatzis I; Yarnall AJ; Rochester L; Mazzà C; Del Din S;
    J Neuroeng Rehabil; 2023 Jun; 20(1):78. PubMed ID: 37316858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accelerometric Gait Analysis Devices in Children-Will They Accept Them? Results From the AVAPed Study.
    Wiedmann I; Grassi M; Duran I; Lavrador R; Alberg E; Daumer M; Schoenau E; Rittweger J
    Front Pediatr; 2020; 8():574443. PubMed ID: 33585360
    [No Abstract]   [Full Text] [Related]  

  • 16. Concurrent validity of walking speed measured by a wearable sensor and a stopwatch during the 10-meter walk test in individuals with stroke.
    Cleland BT; Alex T; Madhavan S
    Gait Posture; 2024 Jan; 107():61-66. PubMed ID: 37757594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gait regularity assessed by wearable sensors: Comparison between accelerometer and gyroscope data for different sensor locations and walking speeds in healthy subjects.
    Scalera GM; Ferrarin M; Rabuffetti M
    J Biomech; 2020 Dec; 113():110115. PubMed ID: 33221581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-World Gait Detection Using a Wrist-Worn Inertial Sensor: Validation Study.
    Kluge F; Brand YE; Micó-Amigo ME; Bertuletti S; D'Ascanio I; Gazit E; Bonci T; Kirk C; Küderle A; Palmerini L; Paraschiv-Ionescu A; Salis F; Soltani A; Ullrich M; Alcock L; Aminian K; Becker C; Brown P; Buekers J; Carsin AE; Caruso M; Caulfield B; Cereatti A; Chiari L; Echevarria C; Eskofier B; Evers J; Garcia-Aymerich J; Hache T; Hansen C; Hausdorff JM; Hiden H; Hume E; Keogh A; Koch S; Maetzler W; Megaritis D; Niessen M; Perlman O; Schwickert L; Scott K; Sharrack B; Singleton D; Vereijken B; Vogiatzis I; Yarnall A; Rochester L; Mazzà C; Del Din S; Mueller A
    JMIR Form Res; 2024 May; 8():e50035. PubMed ID: 38691395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calibration-Free Gait Assessment by Foot-Worn Inertial Sensors.
    Laidig D; Jocham AJ; Guggenberger B; Adamer K; Fischer M; Seel T
    Front Digit Health; 2021; 3():736418. PubMed ID: 34806077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationships among subjective patient-reported outcome, quality of life, and objective gait characteristics using wearable foot inertial-sensor assessment in foot-ankle patients.
    Angthong C; Veljkovic A
    Eur J Orthop Surg Traumatol; 2019 Apr; 29(3):683-687. PubMed ID: 30488138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.