These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 36195956)

  • 1. Artificial intelligence for quantifying immune infiltrates interacting with stroma in colorectal cancer.
    Yang J; Ye H; Fan X; Li Y; Wu X; Zhao M; Hu Q; Ye Y; Wu L; Li Z; Zhang X; Liang C; Wang Y; Xu Y; Li Q; Yao S; You D; Zhao K; Liu Z
    J Transl Med; 2022 Oct; 20(1):451. PubMed ID: 36195956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial intelligence-assisted analysis for tumor-immune interaction within the invasive margin of colorectal cancer.
    Ye Y; Wu X; Wang H; Ye H; Zhao K; Yao S; Liu Z; Zhu Y; Zhang Q; Liang C
    Ann Med; 2023 Dec; 55(1):2215541. PubMed ID: 37224471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A deep learning quantified stroma-immune score to predict survival of patients with stage II-III colorectal cancer.
    Xu Z; Li Y; Wang Y; Zhang S; Huang Y; Yao S; Han C; Pan X; Shi Z; Mao Y; Xu Y; Huang X; Lin H; Chen X; Liang C; Li Z; Zhao K; Zhang Q; Liu Z
    Cancer Cell Int; 2021 Oct; 21(1):585. PubMed ID: 34717647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Utility of artificial intelligence with deep learning of hematoxylin and eosin-stained whole slide images to predict lymph node metastasis in T1 colorectal cancer using endoscopically resected specimens; prediction of lymph node metastasis in T1 colorectal cancer.
    Song JH; Hong Y; Kim ER; Kim SH; Sohn I
    J Gastroenterol; 2022 Sep; 57(9):654-666. PubMed ID: 35802259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial intelligence quantified tumour-stroma ratio is an independent predictor for overall survival in resectable colorectal cancer.
    Zhao K; Li Z; Yao S; Wang Y; Wu X; Xu Z; Wu L; Huang Y; Liang C; Liu Z
    EBioMedicine; 2020 Nov; 61():103054. PubMed ID: 33039706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fully Automated Tumor Bud Assessment in Hematoxylin and Eosin-Stained Whole Slide Images of Colorectal Cancer.
    Bokhorst JM; Ciompi F; Öztürk SK; Oguz Erdogan AS; Vieth M; Dawson H; Kirsch R; Simmer F; Sheahan K; Lugli A; Zlobec I; van der Laak J; Nagtegaal ID
    Mod Pathol; 2023 Sep; 36(9):100233. PubMed ID: 37257824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An artificial intelligence-based ecological index for prognostic evaluation of colorectal cancer.
    Chen Q; Cai M; Fan X; Liu W; Fang G; Yao S; Xu Y; Li Q; Zhao Y; Zhao K; Liu Z; Chen Z
    BMC Cancer; 2023 Aug; 23(1):763. PubMed ID: 37592224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prognostic Significance of Immune Cell Populations Identified by Machine Learning in Colorectal Cancer Using Routine Hematoxylin and Eosin-Stained Sections.
    Väyrynen JP; Lau MC; Haruki K; Väyrynen SA; Dias Costa A; Borowsky J; Zhao M; Fujiyoshi K; Arima K; Twombly TS; Kishikawa J; Gu S; Aminmozaffari S; Shi S; Baba Y; Akimoto N; Ugai T; Da Silva A; Song M; Wu K; Chan AT; Nishihara R; Fuchs CS; Meyerhardt JA; Giannakis M; Ogino S; Nowak JA
    Clin Cancer Res; 2020 Aug; 26(16):4326-4338. PubMed ID: 32439699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning quantified mucus-tumor ratio predicting survival of patients with colorectal cancer using whole-slide images.
    Zhao K; Wu L; Huang Y; Yao S; Xu Z; Lin H; Wang H; Liang Y; Xu Y; Chen X; Zhao M; Peng J; Huang Y; Liang C; Li Z; Li Y; Liu Z
    Precis Clin Med; 2021 Mar; 4(1):17-24. PubMed ID: 35693123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study.
    Kather JN; Krisam J; Charoentong P; Luedde T; Herpel E; Weis CA; Gaiser T; Marx A; Valous NA; Ferber D; Jansen L; Reyes-Aldasoro CC; Zörnig I; Jäger D; Brenner H; Chang-Claude J; Hoffmeister M; Halama N
    PLoS Med; 2019 Jan; 16(1):e1002730. PubMed ID: 30677016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction and validation of artificial intelligence pathomics models for predicting pathological staging in colorectal cancer: Using multimodal data and clinical variables.
    Tan Y; Liu R; Xue JW; Feng Z
    Cancer Med; 2024 Apr; 13(7):e6947. PubMed ID: 38545828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificial intelligence-based analysis of tumor-infiltrating lymphocyte spatial distribution for colorectal cancer prognosis.
    Cai M; Zhao K; Wu L; Huang Y; Zhao M; Hu Q; Chen Q; Yao S; Li Z; Fan X; Liu Z
    Chin Med J (Engl); 2024 Feb; 137(4):421-430. PubMed ID: 38238158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep Learning and Colon Cancer Interpretation: Rise of the Machine.
    McHugh K; Pai RK
    Surg Pathol Clin; 2023 Dec; 16(4):651-658. PubMed ID: 37863557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A digital score of tumour-associated stroma infiltrating lymphocytes predicts survival in head and neck squamous cell carcinoma.
    Shaban M; Raza SEA; Hassan M; Jamshed A; Mushtaq S; Loya A; Batis N; Brooks J; Nankivell P; Sharma N; Robinson M; Mehanna H; Khurram SA; Rajpoot N
    J Pathol; 2022 Feb; 256(2):174-185. PubMed ID: 34698394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A retrospective analysis using deep-learning models for prediction of survival outcome and benefit of adjuvant chemotherapy in stage II/III colorectal cancer.
    Li X; Jonnagaddala J; Yang S; Zhang H; Xu XS
    J Cancer Res Clin Oncol; 2022 Aug; 148(8):1955-1963. PubMed ID: 35332389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analytical Validation of the PreciseDx Digital Prognostic Breast Cancer Test in Early-Stage Breast Cancer.
    Fernandez G; Zeineh J; Prastawa M; Scott R; Madduri AS; Shtabsky A; Jaffer S; Feliz A; Veremis B; Mejias JC; Charytonowicz E; Gladoun N; Koll G; Cruz K; Malinowski D; Donovan MJ
    Clin Breast Cancer; 2024 Feb; 24(2):93-102.e6. PubMed ID: 38114366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peritumoral tertiary lymphoid structure and tumor stroma percentage predict the prognosis of patients with non-metastatic colorectal cancer.
    Wang Q; Shen X; An R; Bai J; Dong J; Cai H; Zhu H; Zhong W; Chen W; Liu A; Du J
    Front Immunol; 2022; 13():962056. PubMed ID: 36189233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated annotations of epithelial cells and stroma in hematoxylin-eosin-stained whole-slide images using cytokeratin re-staining.
    Brázdil T; Gallo M; Nenutil R; Kubanda A; Toufar M; Holub P
    J Pathol Clin Res; 2022 Mar; 8(2):129-142. PubMed ID: 34716754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning based tissue analysis predicts outcome in colorectal cancer.
    Bychkov D; Linder N; Turkki R; Nordling S; Kovanen PE; Verrill C; Walliander M; Lundin M; Haglund C; Lundin J
    Sci Rep; 2018 Feb; 8(1):3395. PubMed ID: 29467373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Crohn's-like lymphoid reaction density: a new artificial intelligence quantified prognostic immune index in colon cancer.
    Zhao M; Yao S; Li Z; Wu L; Xu Z; Pan X; Lin H; Xu Y; Yang S; Zhang S; Li Y; Zhao K; Liang C; Liu Z
    Cancer Immunol Immunother; 2022 May; 71(5):1221-1231. PubMed ID: 34642778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.