These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 36196655)

  • 1. Application of time domain nuclear magnetic resonance (TD-NMR) for study of the distillation curve of petroleum.
    Montes LF; Morgan VG; Kock FVC; Castro EVR; Barbosa LL
    Magn Reson Chem; 2023 Jan; 61(1):32-39. PubMed ID: 36196655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time domain NMR: An alternative for study of the asphaltenes precipitated in petroleum.
    Morgan VG; Sad CMS; Leite JSD; Castro ERV; Barbosa LL
    Magn Reson Chem; 2022 Oct; 60(10):996-1004. PubMed ID: 35899432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics and composition of crude oil by low-field nuclear magnetic resonance.
    Jia Z; Xiao L; Wang Z; Liao G; Zhang Y; Liang C
    Magn Reson Chem; 2016 Aug; 54(8):650-5. PubMed ID: 26990450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of benchtop low-field NMR spectrometers in the refining industry: A multivariate calibration approach for rapid characterization of crude oils.
    Sassu L; Puligheddu S; Puligheddu C; Palomba S; Muru E; Mattia C; Allevi C
    Magn Reson Chem; 2020 Dec; 58(12):1222-1233. PubMed ID: 32869885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristics of bicyclic sesquiterpanes in crude oils and petroleum products.
    Yang C; Wang Z; Hollebone BP; Brown CE; Landriault M
    J Chromatogr A; 2009 May; 1216(20):4475-84. PubMed ID: 19321169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular mobility changes after high-temperature, short-time pasteurization: An extended time-domain nuclear magnetic resonance screening of ewe milk.
    Curti E; Pardu A; Melis R; Addis M; Pes M; Pirisi A; Anedda R
    J Dairy Sci; 2020 Nov; 103(11):9881-9892. PubMed ID: 32921454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanofluidity of fatty acid hydrocarbon chains as monitored by benchtop time-domain nuclear magnetic resonance.
    Robinson MD; Cistola DP
    Biochemistry; 2014 Dec; 53(48):7515-22. PubMed ID: 25409529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of physical-chemical properties of crude oils by 1H NMR analysis of neat samples and chemometrics.
    Masili A; Puligheddu S; Sassu L; Scano P; Lai A
    Magn Reson Chem; 2012 Nov; 50(11):729-38. PubMed ID: 22968935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Process integration of crude oil distillation with technological and economic restrictions.
    Ulyev L; Vasiliev M; Boldyryev S
    J Environ Manage; 2018 Sep; 222():454-464. PubMed ID: 29906717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of microscale-preparative multidimensional gas chromatography with nuclear magnetic resonance spectroscopy for identification of pure methylnaphthalenes from crude oils.
    Eyres GT; Urban S; Morrison PD; Marriott PJ
    J Chromatogr A; 2008 Dec; 1215(1-2):168-76. PubMed ID: 19027909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physical and chemical characterization of petroleum products by GC-MS.
    Mendez A; Meneghini R; Lubkowitz J
    J Chromatogr Sci; 2007; 45(10):683-9. PubMed ID: 18078577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiscale nuclear magnetic relaxation dispersion of complex liquids in bulk and confinement.
    Korb JP
    Prog Nucl Magn Reson Spectrosc; 2018 Feb; 104():12-55. PubMed ID: 29405980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification by NMR of key compounds present in beer distillates and residual phases after dealcoholization by vacuum distillation.
    Labrado D; Ferrero S; Caballero I; Alvarez CM; Villafañe F; Blanco CA
    J Sci Food Agric; 2020 Aug; 100(10):3971-3978. PubMed ID: 32333388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of DNA adducts from oil-derived products analyzed by 32P-HPLC.
    Akkineni LK; Zeisig M; Baranczewski P; Ekström LG; Möller L
    Arch Toxicol; 2001 Jan; 74(11):720-31. PubMed ID: 11218050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-field NMR determinations of the properties of heavy oils and water-in-oil emulsions.
    LaTorraca GA; Dunn KJ; Webber PR; Carlson RM
    Magn Reson Imaging; 1998; 16(5-6):659-62. PubMed ID: 9803933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Dynamics and Chain Length of Edible Oil Using Low-Field Nuclear Magnetic Resonance.
    Jia Z; Liang C
    Molecules; 2022 Dec; 28(1):. PubMed ID: 36615389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative Evaluation of the Crystallinity of Indomethacin Using
    Okada K; Hayashi Y; Kumada S; Onuki Y
    J Pharm Sci; 2020 Aug; 109(8):2577-2584. PubMed ID: 32473213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physical characterization of high methoxyl pectin and sunflower oil wax emulsions: A low-field
    Akkaya S; Ozel B; Oztop MH; Yanik DK; Gogus F
    J Food Sci; 2021 Jan; 86(1):120-128. PubMed ID: 33336400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Treatment of petroleum refinery wastewater by distillation-assisted catalytic oxidation under low temperature and low pressure.
    Gao X; Li W; Fu F; Li D; Cao Z; Wang J
    Water Sci Technol; 2011; 63(11):2713-8. PubMed ID: 22049769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Petroleum mineral oil refining and evaluation of cancer hazard.
    Mackerer CR; Griffis LC; Grabowski JS; Reitman FA
    Appl Occup Environ Hyg; 2003 Nov; 18(11):890-901. PubMed ID: 14555442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.