These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 36196923)

  • 21. Tuning the Coordination Environment of Carbon-Based Single-Atom Catalysts via Doping with Multiple Heteroatoms and Their Applications in Electrocatalysis.
    Qi Z; Zhou Y; Guan R; Fu Y; Baek JB
    Adv Mater; 2023 Sep; 35(38):e2210575. PubMed ID: 36779510
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Controlled Synthesis and Structure Engineering of Transition Metal-based Nanomaterials for Oxygen and Hydrogen Electrocatalysis in Zinc-Air Battery and Water-Splitting Devices.
    Zhang Z; Zhang H; Yao Y; Wang J; Guo H; Deng Y; Han X
    ChemSusChem; 2021 Apr; 14(7):1659-1673. PubMed ID: 33565262
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tailoring of Active Sites from Single to Dual Atom Sites for Highly Efficient Electrocatalysis.
    Zhang H; Jin X; Lee JM; Wang X
    ACS Nano; 2022 Nov; 16(11):17572-17592. PubMed ID: 36331385
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Advances of Synergistic Electrocatalysis Between Single Atoms and Nanoparticles/Clusters.
    Luo G; Song M; Zhang Q; An L; Shen T; Wang S; Hu H; Huang X; Wang D
    Nanomicro Lett; 2024 Jul; 16(1):241. PubMed ID: 38980634
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Locally Ordered Single-Atom Catalysts for Electrocatalysis.
    Ren Y; Wang J; Zhang M; Wang Y; Cao Y; Kim DH; Lin Z
    Angew Chem Int Ed Engl; 2024 Jan; 63(5):e202315003. PubMed ID: 37932862
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Boosting Electrochemical Carbon Dioxide Reduction on Atomically Dispersed Nickel Catalyst.
    Hao Q; Liu DX; Deng R; Zhong HX
    Front Chem; 2021; 9():837580. PubMed ID: 35127659
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulating the Critical Intermediates of Dual-Atom Catalysts for CO
    Zhang M; Zhou D; Mu X; Wang D; Liu S; Dai Z
    Small; 2024 Oct; 20(40):e2402050. PubMed ID: 38801298
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Breaking scaling relations for efficient CO
    Ouyang Y; Shi L; Bai X; Li Q; Wang J
    Chem Sci; 2020 Jan; 11(7):1807-1813. PubMed ID: 34123273
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Outer-coordination sphere in multi-H
    Sinha S; Williams CK; Jiang JJ
    iScience; 2022 Jan; 25(1):103628. PubMed ID: 35005563
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Iron-based single-atom electrocatalysts: synthetic strategies and applications.
    Liu Q; Wang Y; Hu Z; Zhang Z
    RSC Adv; 2021 Jan; 11(5):3079-3095. PubMed ID: 35424223
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Carbon Catalysts Empowering Sustainable Chemical Synthesis via Electrochemical CO
    Zhao Y; Raj J; Xu X; Jiang J; Wu J; Fan M
    Small; 2024 Feb; ():e2311163. PubMed ID: 38308114
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CO
    Zhang S; Fan Q; Xia R; Meyer TJ
    Acc Chem Res; 2020 Jan; 53(1):255-264. PubMed ID: 31913013
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Emerging Electrochemical Techniques for Probing Site Behavior in Single-Atom Electrocatalysts.
    Jin Z; Li P; Fang Z; Yu G
    Acc Chem Res; 2022 Mar; 55(5):759-769. PubMed ID: 35148075
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single-atom and cluster catalysts for thermocatalytic ammonia synthesis at mild conditions.
    Peng X; Zhang M; Zhang T; Zhou Y; Ni J; Wang X; Jiang L
    Chem Sci; 2024 Apr; 15(16):5897-5915. PubMed ID: 38665515
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Emerging Dual-Atomic-Site Catalysts for Efficient Energy Catalysis.
    Zhang W; Chao Y; Zhang W; Zhou J; Lv F; Wang K; Lin F; Luo H; Li J; Tong M; Wang E; Guo S
    Adv Mater; 2021 Sep; 33(36):e2102576. PubMed ID: 34296795
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Engineering Single-Atom Cobalt Catalysts toward Improved Electrocatalysis.
    Wan G; Yu P; Chen H; Wen J; Sun CJ; Zhou H; Zhang N; Li Q; Zhao W; Xie B; Li T; Shi J
    Small; 2018 Apr; 14(15):e1704319. PubMed ID: 29504227
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recent progress in single-atom alloys: Synthesis, properties, and applications in environmental catalysis.
    Xu Z; Ao Z; Yang M; Wang S
    J Hazard Mater; 2022 Feb; 424(Pt B):127427. PubMed ID: 34678562
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimizing the Activation Energy of Reactive Intermediates on Single-Atom Electrocatalysts: Challenges and Opportunities.
    Shi L; Zhang Q; Yang S; Ren P; Wu Y; Liu S
    Small Methods; 2024 Jul; 8(7):e2301219. PubMed ID: 38180156
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MOFs-Derived Carbon-Based Metal Catalysts for Energy-Related Electrocatalysis.
    Wang T; Cao X; Jiao L
    Small; 2021 Jun; 17(22):e2004398. PubMed ID: 33458960
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ambient Electrosynthesis toward Single-Atom Sites for Electrocatalytic Green Hydrogen Cycling.
    Zhao X; He D; Xia BY; Sun Y; You B
    Adv Mater; 2023 Apr; 35(14):e2210703. PubMed ID: 36799551
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.