These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. To be or noot to be: evolutionary tinkering for symbiotic organ identity. Couzigou JM; Mondy S; Sahl L; Gourion B; Ratet P Plant Signal Behav; 2013 Aug; 8(8):. PubMed ID: 23733067 [TBL] [Abstract][Full Text] [Related]
4. The formation of stipule requires the coordinated actions of the legume orthologs of Arabidopsis BLADE-ON-PETIOLE and LEAFY. Zhang J; Wang X; Han L; Zhang J; Xie Y; Li J; Wang ZY; Wen J; Mysore KS; Zhou C New Phytol; 2022 Nov; 236(4):1512-1528. PubMed ID: 36031740 [TBL] [Abstract][Full Text] [Related]
5. The Medicago truncatula nodule identity gene MtNOOT1 is required for coordinated apical-basal development of the root. Shen D; Kulikova O; Guhl K; Franssen H; Kohlen W; Bisseling T; Geurts R BMC Plant Biol; 2019 Dec; 19(1):571. PubMed ID: 31856724 [TBL] [Abstract][Full Text] [Related]
6. NODULE ROOT and COCHLEATA maintain nodule development and are legume orthologs of Arabidopsis BLADE-ON-PETIOLE genes. Couzigou JM; Zhukov V; Mondy S; Abu el Heba G; Cosson V; Ellis TH; Ambrose M; Wen J; Tadege M; Tikhonovich I; Mysore KS; Putterill J; Hofer J; Borisov AY; Ratet P Plant Cell; 2012 Nov; 24(11):4498-510. PubMed ID: 23136374 [TBL] [Abstract][Full Text] [Related]
7. Lotus japonicus NOOT-BOP-COCH-LIKE1 is essential for nodule, nectary, leaf and flower development. Magne K; George J; Berbel Tornero A; Broquet B; Madueño F; Andersen SU; Ratet P Plant J; 2018 Jun; 94(5):880-894. PubMed ID: 29570881 [TBL] [Abstract][Full Text] [Related]
8. The legume NOOT-BOP-COCH-LIKE genes are conserved regulators of abscission, a major agronomical trait in cultivated crops. Couzigou JM; Magne K; Mondy S; Cosson V; Clements J; Ratet P New Phytol; 2016 Jan; 209(1):228-40. PubMed ID: 26390061 [TBL] [Abstract][Full Text] [Related]
9. Analysis of nodule senescence in pea (Pisum sativum L.) using laser microdissection, real-time PCR, and ACC immunolocalization. Serova TA; Tikhonovich IA; Tsyganov VE J Plant Physiol; 2017 May; 212():29-44. PubMed ID: 28242415 [TBL] [Abstract][Full Text] [Related]
10. The identification of novel loci required for appropriate nodule development in Medicago truncatula. Domonkos A; Horvath B; Marsh JF; Halasz G; Ayaydin F; Oldroyd GE; Kalo P BMC Plant Biol; 2013 Oct; 13():157. PubMed ID: 24119289 [TBL] [Abstract][Full Text] [Related]
11. Comparative analysis of remodelling of the plant-microbe interface in Pisum sativum and Medicago truncatula symbiotic nodules. Tsyganova AV; Seliverstova EV; Brewin NJ; Tsyganov VE Protoplasma; 2019 Jul; 256(4):983-996. PubMed ID: 30793221 [TBL] [Abstract][Full Text] [Related]
12. Comparative analysis of the tubulin cytoskeleton organization in nodules of Medicago truncatula and Pisum sativum: bacterial release and bacteroid positioning correlate with characteristic microtubule rearrangements. Kitaeva AB; Demchenko KN; Tikhonovich IA; Timmers AC; Tsyganov VE New Phytol; 2016 Apr; 210(1):168-83. PubMed ID: 26682876 [TBL] [Abstract][Full Text] [Related]
13. Medicago truncatula NIN is essential for rhizobial-independent nodule organogenesis induced by autoactive calcium/calmodulin-dependent protein kinase. Marsh JF; Rakocevic A; Mitra RM; Brocard L; Sun J; Eschstruth A; Long SR; Schultze M; Ratet P; Oldroyd GE Plant Physiol; 2007 May; 144(1):324-35. PubMed ID: 17369436 [TBL] [Abstract][Full Text] [Related]
14. Induction of host defences by Rhizobium during ineffective nodulation of pea (Pisum sativum L.) carrying symbiotically defective mutations sym40 (PsEFD), sym33 (PsIPD3/PsCYCLOPS) and sym42. Ivanova KA; Tsyganova AV; Brewin NJ; Tikhonovich IA; Tsyganov VE Protoplasma; 2015 Nov; 252(6):1505-17. PubMed ID: 25743038 [TBL] [Abstract][Full Text] [Related]
15. The Kovács S; Kiss E; Jenei S; Fehér-Juhász E; Kereszt A; Endre G Mol Plant Microbe Interact; 2022 May; 35(5):401-415. PubMed ID: 35171648 [TBL] [Abstract][Full Text] [Related]
16. The putative transporter MtUMAMIT14 participates in nodule formation in Medicago truncatula. Garcia K; Cloghessy K; Cooney DR; Shelley B; Chakraborty S; Kafle A; Busidan A; Sonawala U; Collier R; Jayaraman D; Ané JM; Pilot G Sci Rep; 2023 Jan; 13(1):804. PubMed ID: 36646812 [TBL] [Abstract][Full Text] [Related]
17. Light-sensitive short hypocotyl genes confer symbiotic nodule identity in the legume Medicago truncatula. Lee T; Orvosova M; Batzenschlager M; Bueno Batista M; Bailey PC; Mohd-Radzman NA; Gurzadyan A; Stuer N; Mysore KS; Wen J; Ott T; Oldroyd GED; Schiessl K Curr Biol; 2024 Feb; 34(4):825-840.e7. PubMed ID: 38301650 [TBL] [Abstract][Full Text] [Related]
18. MtZR1, a PRAF protein, is involved in the development of roots and symbiotic root nodules in Medicago truncatula. Hopkins J; Pierre O; Kazmierczak T; Gruber V; Frugier F; Clement M; Frendo P; Herouart D; Boncompagni E Plant Cell Environ; 2014 Mar; 37(3):658-69. PubMed ID: 23961805 [TBL] [Abstract][Full Text] [Related]
19. Early nodule senescence is activated in symbiotic mutants of pea (Pisum sativum L.) forming ineffective nodules blocked at different nodule developmental stages. Serova TA; Tsyganova AV; Tsyganov VE Protoplasma; 2018 Sep; 255(5):1443-1459. PubMed ID: 29616347 [TBL] [Abstract][Full Text] [Related]
20. The Symbiosis-Related ERN Transcription Factors Act in Concert to Coordinate Rhizobial Host Root Infection. Cerri MR; Frances L; Kelner A; Fournier J; Middleton PH; Auriac MC; Mysore KS; Wen J; Erard M; Barker DG; Oldroyd GE; de Carvalho-Niebel F Plant Physiol; 2016 Jun; 171(2):1037-54. PubMed ID: 27208242 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]