These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 36197190)

  • 1. A study on brain neuronal activation based on the load in upper limb exercise (STROBE).
    Choi JS; Choi MH
    Medicine (Baltimore); 2022 Sep; 101(38):e30761. PubMed ID: 36197190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hands in motion: an upper-limb-selective area in the occipitotemporal cortex shows sensitivity to viewed hand kinematics.
    Orlov T; Porat Y; Makin TR; Zohary E
    J Neurosci; 2014 Apr; 34(14):4882-95. PubMed ID: 24695707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FMRI of shared-stream priming of lexical identification by object semantics along the ventral visual processing stream.
    Neudorf J; Ekstrand C; Kress S; Borowsky R
    Neuropsychologia; 2019 Oct; 133():107185. PubMed ID: 31513807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of the anterior intraparietal sulcus and the lateral occipital cortex in fingertip force scaling and weight perception during object lifting.
    van Polanen V; Rens G; Davare M
    J Neurophysiol; 2020 Aug; 124(2):557-573. PubMed ID: 32667252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced effectiveness in visuo-haptic object-selective brain regions with increasing stimulus salience.
    Kim S; James TW
    Hum Brain Mapp; 2010 May; 31(5):678-93. PubMed ID: 19830683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural mechanisms of visual attention: object-based selection of a region in space.
    Arrington CM; Carr TH; Mayer AR; Rao SM
    J Cogn Neurosci; 2000; 12 Suppl 2():106-17. PubMed ID: 11506651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain network involved in visual processing of movement stimuli used in upper limb robotic training: an fMRI study.
    Nocchi F; Gazzellini S; Grisolia C; Petrarca M; Cannatà V; Cappa P; D'Alessio T; Castelli E
    J Neuroeng Rehabil; 2012 Jul; 9():49. PubMed ID: 22828181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cerebral activation and lateralization due to the cognition of a various driving speed difference: an fMRI study.
    Kim HS; Choi MH; Yoon HJ; Kim HJ; Jeoung UH; Park SJ; Lim DW; Chung SC; Lee BY
    Biomed Mater Eng; 2014; 24(1):1133-9. PubMed ID: 24212006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cortical fMRI activation produced by attentive tracking of moving targets.
    Culham JC; Brandt SA; Cavanagh P; Kanwisher NG; Dale AM; Tootell RB
    J Neurophysiol; 1998 Nov; 80(5):2657-70. PubMed ID: 9819271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mirror-induced visual illusion of hand movements: a functional magnetic resonance imaging study.
    Matthys K; Smits M; Van der Geest JN; Van der Lugt A; Seurinck R; Stam HJ; Selles RW
    Arch Phys Med Rehabil; 2009 Apr; 90(4):675-81. PubMed ID: 19345786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping multiple visual areas in the human brain with a short fMRI sequence.
    Stiers P; Peeters R; Lagae L; Van Hecke P; Sunaert S
    Neuroimage; 2006 Jan; 29(1):74-89. PubMed ID: 16154766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gender differences in brain regional homogeneity of healthy subjects after normal sleep and after sleep deprivation: a resting-state fMRI study.
    Dai XJ; Gong HH; Wang YX; Zhou FQ; Min YJ; Zhao F; Wang SY; Liu BX; Xiao XZ
    Sleep Med; 2012 Jun; 13(6):720-7. PubMed ID: 22503940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brain areas involved in perception of biological motion.
    Grossman E; Donnelly M; Price R; Pickens D; Morgan V; Neighbor G; Blake R
    J Cogn Neurosci; 2000 Sep; 12(5):711-20. PubMed ID: 11054914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visual perception of motion and 3-D structure from motion: an fMRI study.
    Paradis AL; Cornilleau-Pérès V; Droulez J; Van De Moortele PF; Lobel E; Berthoz A; Le Bihan D; Poline JB
    Cereb Cortex; 2000 Aug; 10(8):772-83. PubMed ID: 10920049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A dynamic object-processing network: metric shape discrimination of dynamic objects by activation of occipitotemporal, parietal, and frontal cortices.
    Schultz J; Chuang L; Vuong QC
    Cereb Cortex; 2008 Jun; 18(6):1302-13. PubMed ID: 17962220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reference frames for spatial cognition: different brain areas are involved in viewer-, object-, and landmark-centered judgments about object location.
    Committeri G; Galati G; Paradis AL; Pizzamiglio L; Berthoz A; LeBihan D
    J Cogn Neurosci; 2004 Nov; 16(9):1517-35. PubMed ID: 15601516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D surface perception from motion involves a temporal-parietal network.
    Beer AL; Watanabe T; Ni R; Sasaki Y; Andersen GJ
    Eur J Neurosci; 2009 Aug; 30(4):703-13. PubMed ID: 19674088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Viewing the motion of human body parts activates different regions of premotor, temporal, and parietal cortex.
    Wheaton KJ; Thompson JC; Syngeniotis A; Abbott DF; Puce A
    Neuroimage; 2004 May; 22(1):277-88. PubMed ID: 15110018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal Evolution of Target Representation, Movement Direction Planning, and Reach Execution in Occipital-Parietal-Frontal Cortex: An fMRI Study.
    Cappadocia DC; Monaco S; Chen Y; Blohm G; Crawford JD
    Cereb Cortex; 2017 Nov; 27(11):5242-5260. PubMed ID: 27744289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain networks governing the golf swing in professional golfers.
    Kim JH; Han JK; Kim BN; Han DH
    J Sports Sci; 2015; 33(19):1980-7. PubMed ID: 25761601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.