These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 36197274)

  • 1. Radiomics approach based on biphasic CT images well differentiate "early stage" of adrenal metastases from lipid-poor adenomas: A STARD compliant article.
    Cao L; Xu W
    Medicine (Baltimore); 2022 Sep; 101(38):e30856. PubMed ID: 36197274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two nomograms based on radiomics models using triphasic CT for differentiation of adrenal lipid-poor benign lesions and metastases in a cancer population: an exploratory study.
    Wang G; Kang B; Cui J; Deng Y; Zhao Y; Ji C; Wang X
    Eur Radiol; 2023 Mar; 33(3):1873-1883. PubMed ID: 36264313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clinical‑imaging‑radiomic nomogram based on unenhanced CT effectively predicts adrenal metastases in patients with lung cancer with small hyperattenuating adrenal incidentalomas.
    Cao L; Yang H; Yao D; Cai H; Wu H; Yu Y; Zhu L; Xu W; Liu Y; Li J
    Oncol Lett; 2024 Aug; 28(2):340. PubMed ID: 38855505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning for differentiation of lipid-poor adrenal adenoma and subclinical pheochromocytoma based on multiphase CT imaging radiomics.
    Xiao DX; Zhong JP; Peng JD; Fan CG; Wang XC; Wen XL; Liao WW; Wang J; Yin XF
    BMC Med Imaging; 2023 Oct; 23(1):159. PubMed ID: 37845636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Small hyperattenuating adrenal nodules in patients with lung cancer: Differentiation of metastases from adenomas on biphasic contrast-enhanced computed tomography.
    Cao L; Zhang L; Xu W
    Front Oncol; 2023; 13():1091102. PubMed ID: 36865810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differentiation of adrenal adenomas from adrenal metastases in single-phased staging dual-energy CT and radiomics.
    Winkelmann MT; Gassenmaier S; Walter SS; Artzner C; Lades F; Faby S; Nikolaou K; Bongers MN
    Diagn Interv Radiol; 2022 May; 28(3):208-216. PubMed ID: 35748202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CT-based radiomics nomogram for differentiation of adrenal hyperplasia from lipid-poor adenoma: an exploratory study.
    Yuan H; Kang B; Sun K; Qin S; Ji C; Wang X
    BMC Med Imaging; 2023 Jan; 23(1):4. PubMed ID: 36611159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual-energy CT in the differentiation between adrenal adenomas and metastases: Usefulness of material density maps and monochromatic images.
    Cano Alonso R; Álvarez Vázquez A; Andreu Vázquez C; Thuissard Vasallo IJ; Fernández Alfonso A; Recio Rodríguez M; Martínez de Vega V
    Radiologia (Engl Ed); 2023; 65(5):402-413. PubMed ID: 37758331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radiomics in the characterization of lipid-poor adrenal adenomas at unenhanced CT: time to look beyond usual density metrics.
    Feliciani G; Serra F; Menghi E; Ferroni F; Sarnelli A; Feo C; Zatelli MC; Ambrosio MR; Giganti M; Carnevale A
    Eur Radiol; 2024 Jan; 34(1):422-432. PubMed ID: 37566266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computed Tomography-Based Radiomics Model to Predict Central Cervical Lymph Node Metastases in Papillary Thyroid Carcinoma: A Multicenter Study.
    Li J; Wu X; Mao N; Zheng G; Zhang H; Mou Y; Jia C; Mi J; Song X
    Front Endocrinol (Lausanne); 2021; 12():741698. PubMed ID: 34745008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiomics Signatures of Computed Tomography Imaging for Predicting Risk Categorization and Clinical Stage of Thymomas.
    Wang X; Sun W; Liang H; Mao X; Lu Z
    Biomed Res Int; 2019; 2019():3616852. PubMed ID: 31275968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CT-based radiomics research for discriminating the risk stratification of pheochromocytoma using different machine learning models: a multi-center study.
    Zhao J; Zhan Y; Zhou Y; Yang Z; Xiong X; Ye Y; Yao B; Xu S; Peng Y; Xiao X; Zeng X; Zuo M; Dai X; Gong L
    Abdom Radiol (NY); 2024 May; 49(5):1569-1583. PubMed ID: 38587628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differentiating the pathological subtypes of primary lung cancer for patients with brain metastases based on radiomics features from brain CT images.
    Zhang J; Jin J; Ai Y; Zhu K; Xiao C; Xie C; Jin X
    Eur Radiol; 2021 Feb; 31(2):1022-1028. PubMed ID: 32822055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a predictive radiomics model for lymph node metastases in pre-surgical CT-based stage IA non-small cell lung cancer.
    Cong M; Feng H; Ren JL; Xu Q; Cong L; Hou Z; Wang YY; Shi G
    Lung Cancer; 2020 Jan; 139():73-79. PubMed ID: 31743889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CT-based radiomics analysis of different machine learning models for differentiating benign and malignant parotid tumors.
    Zheng Y; Zhou D; Liu H; Wen M
    Eur Radiol; 2022 Oct; 32(10):6953-6964. PubMed ID: 35484339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiomics Analysis of Multiphasic Computed Tomography Images for Distinguishing High-Risk Thymic Epithelial Tumors From Low-Risk Thymic Epithelial Tumors.
    Liufu Y; Wen Y; Wu W; Su R; Liu S; Li J; Pan X; Chen K; Guan Y
    J Comput Assist Tomogr; 2023 Mar-Apr 01; 47(2):220-228. PubMed ID: 36877755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and validation of a model predicting adrenal lipid-poor adenoma based on the minimum attenuation value from non-contrast CT: a dual-center retrospective study.
    Zhu H; Wu M; Feng B; Zhang H; Hu C; Zhang T; Han Z
    BMC Med Imaging; 2024 Aug; 24(1):210. PubMed ID: 39134939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiphasic CT-Based Radiomics Analysis for the Differentiation of Benign and Malignant Parotid Tumors.
    Yu Q; Wang A; Gu J; Li Q; Ning Y; Peng J; Lv F; Zhang X
    Front Oncol; 2022; 12():913898. PubMed ID: 35847942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Preliminary Study for Distinguish Hormone-Secreting Functional Adrenocortical Adenoma Subtypes Using Multiparametric CT Radiomics-Based Machine Learning Model and Nomogram.
    Zheng Y; Liu X; Zhong Y; Lv F; Yang H
    Front Oncol; 2020; 10():570502. PubMed ID: 33117700
    [No Abstract]   [Full Text] [Related]  

  • 20. A radiomic-based model of different contrast-enhanced CT phase for differentiate intrahepatic cholangiocarcinoma from inflammatory mass with hepatolithiasis.
    Xue B; Wu S; Zhang M; Hong J; Liu B; Xu N; Zeng Q; Tang K; Zheng X
    Abdom Radiol (NY); 2021 Aug; 46(8):3835-3844. PubMed ID: 33728532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.