These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
294 related articles for article (PubMed ID: 36197293)
1. Control of Enzyme Reaction Initiation inside Giant Unilamellar Vesicles by the Cell-Penetrating Peptide-Mediated Translocation of Cargo Proteins. Miwa A; Kamiya K ACS Synth Biol; 2022 Nov; 11(11):3836-3846. PubMed ID: 36197293 [TBL] [Abstract][Full Text] [Related]
2. A Single GUV Method for Revealing the Action of Cell-Penetrating Peptides in Biomembranes. Moghal MMR; Shuma ML; Islam MZ; Yamazaki M Methods Mol Biol; 2022; 2383():167-179. PubMed ID: 34766289 [TBL] [Abstract][Full Text] [Related]
3. Role of Membrane Potential on Entry of Cell-Penetrating Peptide Transportan 10 into Single Vesicles. Moghal MMR; Islam MZ; Hossain F; Saha SK; Yamazaki M Biophys J; 2020 Jan; 118(1):57-69. PubMed ID: 31810658 [TBL] [Abstract][Full Text] [Related]
4. Effects of Mechanical Properties of Lipid Bilayers on the Entry of Cell-Penetrating Peptides into Single Vesicles. Islam MZ; Sharmin S; Levadnyy V; Alam Shibly SU; Yamazaki M Langmuir; 2017 Mar; 33(9):2433-2443. PubMed ID: 28166411 [TBL] [Abstract][Full Text] [Related]
5. Continuous detection of entry of cell-penetrating peptide transportan 10 into single vesicles. Moghal MMR; Islam MZ; Sharmin S; Levadnyy V; Moniruzzaman M; Yamazaki M Chem Phys Lipids; 2018 May; 212():120-129. PubMed ID: 29425855 [TBL] [Abstract][Full Text] [Related]
6. Effects of pyrenebutyrate on the translocation of arginine-rich cell-penetrating peptides through artificial membranes: recruiting peptides to the membranes, dissipating liquid-ordered phases, and inducing curvature. Katayama S; Nakase I; Yano Y; Murayama T; Nakata Y; Matsuzaki K; Futaki S Biochim Biophys Acta; 2013 Sep; 1828(9):2134-42. PubMed ID: 23711826 [TBL] [Abstract][Full Text] [Related]
7. Effects of Lipid Composition on the Entry of Cell-Penetrating Peptide Oligoarginine into Single Vesicles. Sharmin S; Islam MZ; Karal MA; Alam Shibly SU; Dohra H; Yamazaki M Biochemistry; 2016 Aug; 55(30):4154-65. PubMed ID: 27420912 [TBL] [Abstract][Full Text] [Related]
8. Arginine-Rich Cell-Penetrating Peptides Induce Lipid Rearrangements for Their Active Translocation across Laterally Heterogeneous Membranes. Park S; Kim J; Oh SS; Choi SQ Adv Sci (Weinh); 2024 Aug; 11(32):e2404563. PubMed ID: 38932459 [TBL] [Abstract][Full Text] [Related]
9. The efficacies of cell-penetrating peptides in accumulating in large unilamellar vesicles depend on their ability to form inverted micelles. Swiecicki JM; Bartsch A; Tailhades J; Di Pisa M; Heller B; Chassaing G; Mansuy C; Burlina F; Lavielle S Chembiochem; 2014 Apr; 15(6):884-91. PubMed ID: 24677480 [TBL] [Abstract][Full Text] [Related]
10. Elementary processes for the entry of cell-penetrating peptides into lipid bilayer vesicles and bacterial cells. Islam MZ; Sharmin S; Moniruzzaman M; Yamazaki M Appl Microbiol Biotechnol; 2018 May; 102(9):3879-3892. PubMed ID: 29523934 [TBL] [Abstract][Full Text] [Related]
11. Entry of cell-penetrating peptide transportan 10 into a single vesicle by translocating across lipid membrane and its induced pores. Islam MZ; Ariyama H; Alam JM; Yamazaki M Biochemistry; 2014 Jan; 53(2):386-96. PubMed ID: 24397335 [TBL] [Abstract][Full Text] [Related]
12. Detection of the Entry of Nonlabeled Transportan 10 into Single Vesicles. Shuma ML; Moghal MMR; Yamazaki M Biochemistry; 2020 May; 59(18):1780-1790. PubMed ID: 32285663 [TBL] [Abstract][Full Text] [Related]
13. Charged giant unilamellar vesicles prepared by electroformation exhibit nanotubes and transbilayer lipid asymmetry. Steinkühler J; De Tillieux P; Knorr RL; Lipowsky R; Dimova R Sci Rep; 2018 Aug; 8(1):11838. PubMed ID: 30087440 [TBL] [Abstract][Full Text] [Related]
14. Antimicrobial peptide magainin 2-induced rupture of single giant unilamellar vesicles comprising E. coli polar lipids. Billah MM; Or Rashid MM; Ahmed M; Yamazaki M Biochim Biophys Acta Biomembr; 2023 Mar; 1865(3):184112. PubMed ID: 36567034 [TBL] [Abstract][Full Text] [Related]
15. Effects of Charged Lipids on Giant Unilamellar Vesicle Fusion and Inner Content Mixing via Freeze-Thawing. Shimomura A; Ina S; Oki M; Tsuji G Chembiochem; 2022 Dec; 23(24):e202200550. PubMed ID: 36321751 [TBL] [Abstract][Full Text] [Related]
16. Negative lipid membranes enhance the adsorption of TAT-decorated elastin-like polypeptide micelles. Walter V; Schmatko T; Muller P; Schroder AP; MacEwan SR; Chilkoti A; Marques CM Biophys J; 2024 Apr; 123(7):901-908. PubMed ID: 38449310 [TBL] [Abstract][Full Text] [Related]
17. Effect of Phosphatidylethanolamine on Pore Formation Induced by the Antimicrobial Peptide PGLa. Ahmed M; Islam MZ; Billah MM; Yamazaki M J Phys Chem B; 2024 Mar; 128(11):2684-2696. PubMed ID: 38450565 [TBL] [Abstract][Full Text] [Related]
18. Translocation of the nonlabeled antimicrobial peptide PGLa across lipid bilayers and its entry into vesicle lumens without pore formation. Ali MH; Shuma ML; Dohra H; Yamazaki M Biochim Biophys Acta Biomembr; 2021 Oct; 1863(10):183680. PubMed ID: 34153295 [TBL] [Abstract][Full Text] [Related]
19. Membrane binding and translocation of cell-penetrating peptides. Thorén PE; Persson D; Esbjörner EK; Goksör M; Lincoln P; Nordén B Biochemistry; 2004 Mar; 43(12):3471-89. PubMed ID: 15035618 [TBL] [Abstract][Full Text] [Related]
20. Action of antimicrobial peptides and cell-penetrating peptides on membrane potential revealed by the single GUV method. Moghal MMR; Hossain F; Yamazaki M Biophys Rev; 2020 Apr; 12(2):339-348. PubMed ID: 32152921 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]