These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
30. Effect of Vesicle Size on the Cytolysis of Cell-Penetrating Peptides (CPPs). Sakamoto K; Kitano T; Kuwahara H; Tedani M; Aburai K; Futaki S; Abe M; Sakai H; Ohtaka H; Yamashita Y Int J Mol Sci; 2020 Oct; 21(19):. PubMed ID: 33036492 [TBL] [Abstract][Full Text] [Related]
31. Translocation of cationic amphipathic peptides across the membranes of pure phospholipid giant vesicles. Wheaten SA; Ablan FD; Spaller BL; Trieu JM; Almeida PF J Am Chem Soc; 2013 Nov; 135(44):16517-25. PubMed ID: 24152283 [TBL] [Abstract][Full Text] [Related]
32. Key Process and Factors Controlling the Direct Translocation of Cell-Penetrating Peptide through Bio-Membrane. Sakamoto K; Morishita T; Aburai K; Sakai K; Abe M; Nakase I; Futaki S; Sakai H Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32751745 [TBL] [Abstract][Full Text] [Related]
33. Interaction of β(3) /β(2) -peptides, consisting of Val-Ala-Leu segments, with POPC giant unilamellar vesicles (GUVs) and white blood cancer cells (U937)--a new type of cell-penetrating peptides, and a surprising chain-length dependence of their vesicle- and cell-lysing activity. Kolesinska B; Eyer K; Robinson T; Dittrich PS; Beck AK; Seebach D; Walde P Chem Biodivers; 2015 May; 12(5):697-732. PubMed ID: 26010661 [TBL] [Abstract][Full Text] [Related]
34. An integrated microfluidic platform to fabricate single-micrometer asymmetric giant unilamellar vesicles (GUVs) using dielectrophoretic separation of microemulsions. Maktabi S; Malmstadt N; Schertzer JW; Chiarot PR Biomicrofluidics; 2021 Mar; 15(2):024112. PubMed ID: 33912267 [TBL] [Abstract][Full Text] [Related]
35. Confocal microscopic observation of fusion between baculovirus budded virus envelopes and single giant unilamellar vesicles. Kamiya K; Kobayashi J; Yoshimura T; Tsumoto K Biochim Biophys Acta; 2010 Sep; 1798(9):1625-31. PubMed ID: 20493165 [TBL] [Abstract][Full Text] [Related]
36. Giant unilamellar vesicles containing phosphatidylinositol(4,5)bisphosphate: characterization and functionality. Carvalho K; Ramos L; Roy C; Picart C Biophys J; 2008 Nov; 95(9):4348-60. PubMed ID: 18502807 [TBL] [Abstract][Full Text] [Related]
37. Cholesterol re-organisation and lipid de-packing by arginine-rich cell penetrating peptides: Role in membrane translocation. Almeida C; Maniti O; Di Pisa M; Swiecicki JM; Ayala-Sanmartin J PLoS One; 2019; 14(1):e0210985. PubMed ID: 30673771 [TBL] [Abstract][Full Text] [Related]
38. Elementary Processes and Mechanisms of Interactions of Antimicrobial Peptides with Membranes-Single Giant Unilamellar Vesicle Studies. Hasan M; Yamazaki M Adv Exp Med Biol; 2019; 1117():17-32. PubMed ID: 30980351 [TBL] [Abstract][Full Text] [Related]
39. Processes and mechanisms underlying burst of giant unilamellar vesicles induced by antimicrobial peptides and compounds. Billah MM; Ahmed M; Islam MZ; Yamazaki M Biochim Biophys Acta Biomembr; 2024 Jun; 1866(5):184330. PubMed ID: 38679311 [TBL] [Abstract][Full Text] [Related]
40. Energy-independent translocation of cell-penetrating peptides occurs without formation of pores. A biophysical study with pep-1. Henriques ST; Quintas A; Bagatolli LA; Homblé F; Castanho MA Mol Membr Biol; 2007; 24(4):282-93. PubMed ID: 17520484 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]