These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 36197444)

  • 1. Performance Comparison of Spectral Distance Calculation Methods.
    Oyama T; Suzuki S; Horiguchi Y; Yamane A; Akao K; Nagamori K; Tsumoto K
    Appl Spectrosc; 2022 Dec; 76(12):1482-1493. PubMed ID: 36197444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of Imperfect Data on the Performance of Algorithms to Compare Near-Ultraviolet Circular Dichroism Spectra.
    Jones C
    Appl Spectrosc; 2021 Jul; 75(7):857-866. PubMed ID: 33464150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Precision of Circular Dichroism Spectral Measurements Permits Detection of Subtle Higher Order Structural Changes in Therapeutic Proteins.
    Barnett GV; Balakrishnan G; Chennamsetty N; Meengs B; Meyer J; Bongers J; Ludwig R; Tao L; Das TK; Leone A; Kar SR
    J Pharm Sci; 2018 Oct; 107(10):2559-2569. PubMed ID: 29913140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectral Similarity: Full-Wavelength Range Calibration of Circular Dichroism Spectroscopy.
    Meuse CW; Rubinson KA
    Appl Spectrosc; 2023 Jan; 77(1):27-36. PubMed ID: 36200904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Circular dichroism of biopharmaceutical proteins in a quality-regulated environment.
    Jones C
    J Pharm Biomed Anal; 2022 Sep; 219():114945. PubMed ID: 35917731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of quantitative spectral similarity analysis methods for protein higher-order structure confirmation.
    Teska BM; Li C; Winn BC; Arthur KK; Jiang Y; Gabrielson JP
    Anal Biochem; 2013 Mar; 434(1):153-65. PubMed ID: 23219560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circular Dichroism Spectral Similarity Plots to Extend Validation and Correction to All Measured Wavelengths.
    Meuse CW
    Appl Spectrosc; 2022 Mar; 76(3):318-330. PubMed ID: 34986660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Comparison Between Emerging and Current Biophysical Methods for the Assessment of Higher-Order Structure of Biopharmaceuticals.
    Wen J; Batabyal D; Knutson N; Lord H; Wikström M
    J Pharm Sci; 2020 Jan; 109(1):247-253. PubMed ID: 31669605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning embedder method and tool for mass spectra similarity search.
    Qin C; Luo X; Deng C; Shu K; Zhu W; Griss J; Hermjakob H; Bai M; Perez-Riverol Y
    J Proteomics; 2021 Feb; 232():104070. PubMed ID: 33307250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of the 2D
    Hwang TL; Batabyal D; Knutson N; Wikström M
    Molecules; 2021 May; 26(9):. PubMed ID: 34063095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Optimizing Savitzky-Golay Parameters and Its Smoothing Pretreatment for FTIR Gas Spectra].
    Zhao AX; Tang XJ; Zhang ZH; Liu JH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 May; 36(5):1340-4. PubMed ID: 30001002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noise characterization in circular dichroism spectroscopy.
    DiNitto JM; Kenney JM
    Appl Spectrosc; 2012 Feb; 66(2):180-7. PubMed ID: 22449282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Searching for Alternatives to the Savitzky-Golay Filter in the Spectral Processing Domain.
    Kałka AJ; Turek AM
    Appl Spectrosc; 2023 Apr; 77(4):426-432. PubMed ID: 36728362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization and testing of mass spectral library search algorithms for compound identification.
    Stein SE; Scott DR
    J Am Soc Mass Spectrom; 1994 Sep; 5(9):859-66. PubMed ID: 24222034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tailoring noise frequency spectrum to improve NIR determinations.
    Xie S; Xiang B; Yu L; Deng H
    Talanta; 2009 Dec; 80(2):895-902. PubMed ID: 19836570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Applications of circular dichroism (CD) for structural analysis of proteins: qualification of near- and far-UV CD for protein higher order structural analysis.
    Li CH; Nguyen X; Narhi L; Chemmalil L; Towers E; Muzammil S; Gabrielson J; Jiang Y
    J Pharm Sci; 2011 Nov; 100(11):4642-54. PubMed ID: 21732370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative spectral comparison by weighted spectral difference for protein higher order structure confirmation.
    Dinh NN; Winn BC; Arthur KK; Gabrielson JP
    Anal Biochem; 2014 Nov; 464():60-2. PubMed ID: 25051254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Weighting function effects in a direct regularization method for image-guided near-infrared spectral tomography of breast cancer.
    Feng J; Jiang S; Pogue BW; Paulsen K
    Biomed Opt Express; 2018 Jul; 9(7):3266-3283. PubMed ID: 29984097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectral Analysis and Deconvolution of the Amide I Band of Proteins Presenting with High-Frequency Noise and Baseline Shifts.
    Fellows AP; Casford MTL; Davies PB
    Appl Spectrosc; 2020 May; 74(5):597-615. PubMed ID: 31868519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enabling adoption of 2D-NMR for the higher order structure assessment of monoclonal antibody therapeutics.
    Brinson RG; Marino JP; Delaglio F; Arbogast LW; Evans RM; Kearsley A; Gingras G; Ghasriani H; Aubin Y; Pierens GK; Jia X; Mobli M; Grant HG; Keizer DW; Schweimer K; Ståhle J; Widmalm G; Zartler ER; Lawrence CW; Reardon PN; Cort JR; Xu P; Ni F; Yanaka S; Kato K; Parnham SR; Tsao D; Blomgren A; Rundlöf T; Trieloff N; Schmieder P; Ross A; Skidmore K; Chen K; Keire D; Freedberg DI; Suter-Stahel T; Wider G; Ilc G; Plavec J; Bradley SA; Baldisseri DM; Sforça ML; Zeri ACM; Wei JY; Szabo CM; Amezcua CA; Jordan JB; Wikström M
    MAbs; 2019 Jan; 11(1):94-105. PubMed ID: 30570405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.