BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

524 related articles for article (PubMed ID: 36197662)

  • 1. Comparison of Natural Language Processing of Clinical Notes With a Validated Risk-Stratification Tool to Predict Severe Maternal Morbidity.
    Clapp MA; Kim E; James KE; Perlis RH; Kaimal AJ; McCoy TH; Easter SR
    JAMA Netw Open; 2022 Oct; 5(10):e2234924. PubMed ID: 36197662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Natural language processing of admission notes to predict severe maternal morbidity during the delivery encounter.
    Clapp MA; Kim E; James KE; Perlis RH; Kaimal AJ; McCoy TH
    Am J Obstet Gynecol; 2022 Sep; 227(3):511.e1-511.e8. PubMed ID: 35430230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of Prediction Models for Critical Care Outcomes Using Natural Language Processing of Electronic Health Record Data.
    Marafino BJ; Park M; Davies JM; Thombley R; Luft HS; Sing DC; Kazi DS; DeJong C; Boscardin WJ; Dean ML; Dudley RA
    JAMA Netw Open; 2018 Dec; 1(8):e185097. PubMed ID: 30646310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Risk of Severe Maternal Morbidity Associated with Maternal Comorbidity Burden and Social Vulnerability.
    Gulersen M; Alvarez A; Suarez F; Kouba I; Rochelson B; Combs A; Nimaroff M; Blitz MJ
    Am J Perinatol; 2024 May; 41(S 01):e3333-e3340. PubMed ID: 38057088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can We Geographically Validate a Natural Language Processing Algorithm for Automated Detection of Incidental Durotomy Across Three Independent Cohorts From Two Continents?
    Karhade AV; Oosterhoff JHF; Groot OQ; Agaronnik N; Ehresman J; Bongers MER; Jaarsma RL; Poonnoose SI; Sciubba DM; Tobert DG; Doornberg JN; Schwab JH
    Clin Orthop Relat Res; 2022 Sep; 480(9):1766-1775. PubMed ID: 35412473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of Natural Language Processing of Electronic Health Records to Measure Goals-of-Care Discussions as a Clinical Trial Outcome.
    Lee RY; Kross EK; Torrence J; Li KS; Sibley J; Cohen T; Lober WB; Engelberg RA; Curtis JR
    JAMA Netw Open; 2023 Mar; 6(3):e231204. PubMed ID: 36862411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Natural Language Processing in a Clinical Decision Support System for the Identification of Venous Thromboembolism: Algorithm Development and Validation.
    Jin ZG; Zhang H; Tai MH; Yang Y; Yao Y; Guo YT
    J Med Internet Res; 2023 Apr; 25():e43153. PubMed ID: 37093636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classifying Firearm Injury Intent in Electronic Hospital Records Using Natural Language Processing.
    MacPhaul E; Zhou L; Mooney SJ; Azrael D; Bowen A; Rowhani-Rahbar A; Yenduri R; Barber C; Goralnick E; Miller M
    JAMA Netw Open; 2023 Apr; 6(4):e235870. PubMed ID: 37022685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and Validation of a Machine Learning Model for Automated Assessment of Resident Clinical Reasoning Documentation.
    Schaye V; Guzman B; Burk-Rafel J; Marin M; Reinstein I; Kudlowitz D; Miller L; Chun J; Aphinyanaphongs Y
    J Gen Intern Med; 2022 Jul; 37(9):2230-2238. PubMed ID: 35710676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prospective validation of a machine learning model that uses provider notes to identify candidates for resective epilepsy surgery.
    Wissel BD; Greiner HM; Glauser TA; Holland-Bouley KD; Mangano FT; Santel D; Faist R; Zhang N; Pestian JP; Szczesniak RD; Dexheimer JW
    Epilepsia; 2020 Jan; 61(1):39-48. PubMed ID: 31784992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. External validation of a machine learning classifier to identify unhealthy alcohol use in hospitalized patients.
    Lin Y; Sharma B; Thompson HM; Boley R; Perticone K; Chhabra N; Afshar M; Karnik NS
    Addiction; 2022 Apr; 117(4):925-933. PubMed ID: 34729829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural language processing and machine learning to identify alcohol misuse from the electronic health record in trauma patients: development and internal validation.
    Afshar M; Phillips A; Karnik N; Mueller J; To D; Gonzalez R; Price R; Cooper R; Joyce C; Dligach D
    J Am Med Inform Assoc; 2019 Mar; 26(3):254-261. PubMed ID: 30602031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Classification of the Disposition of Patients Hospitalized with COVID-19: Reading Discharge Summaries Using Natural Language Processing.
    Fernandes M; Sun H; Jain A; Alabsi HS; Brenner LN; Ye E; Ge W; Collens SI; Leone MJ; Das S; Robbins GK; Mukerji SS; Westover MB
    JMIR Med Inform; 2021 Feb; 9(2):e25457. PubMed ID: 33449908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of Natural Language Processing of Patient-Initiated Electronic Health Record Messages to Identify Patients With COVID-19 Infection.
    Mermin-Bunnell K; Zhu Y; Hornback A; Damhorst G; Walker T; Robichaux C; Mathew L; Jaquemet N; Peters K; Johnson TM; Wang MD; Anderson B
    JAMA Netw Open; 2023 Jul; 6(7):e2322299. PubMed ID: 37418261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of Preanesthetic History Elements by a Natural Language Processing Engine.
    Suh HS; Tully JL; Meineke MN; Waterman RS; Gabriel RA
    Anesth Analg; 2022 Dec; 135(6):1162-1171. PubMed ID: 35841317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural Language Processing for Asthma Ascertainment in Different Practice Settings.
    Wi CI; Sohn S; Ali M; Krusemark E; Ryu E; Liu H; Juhn YJ
    J Allergy Clin Immunol Pract; 2018; 6(1):126-131. PubMed ID: 28634104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Challenges of Developing a Natural Language Processing Method With Electronic Health Records to Identify Persons With Chronic Mobility Disability.
    Agaronnik ND; Lindvall C; El-Jawahri A; He W; Iezzoni LI
    Arch Phys Med Rehabil; 2020 Oct; 101(10):1739-1746. PubMed ID: 32446905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mixed-methods evaluation of three natural language processing modeling approaches for measuring documented goals-of-care discussions in the electronic health record.
    Uyeda AM; Curtis JR; Engelberg RA; Brumback LC; Guo Y; Sibley J; Lober WB; Cohen T; Torrence J; Heywood J; Paul SR; Kross EK; Lee RY
    J Pain Symptom Manage; 2022 Jun; 63(6):e713-e723. PubMed ID: 35182715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and Validation of an Electronic Health Record-Based Machine Learning Model to Estimate Delirium Risk in Newly Hospitalized Patients Without Known Cognitive Impairment.
    Wong A; Young AT; Liang AS; Gonzales R; Douglas VC; Hadley D
    JAMA Netw Open; 2018 Aug; 1(4):e181018. PubMed ID: 30646095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of a modified obstetric comorbidity index for prediction of postpartum adverse events including fetal morbidity - a retrospective cohort study from Qatar.
    Chaalan F; Minisha F; Zaidi Z; Babekar A; Saleh HAH; Shurbak ZSB; Al Baloushi M; Alnaama A; Ahmed H; Babarinsa I; Dewik NA; Pallivalapila A; Olagundoye V; Farrell T
    BMC Pregnancy Childbirth; 2024 Jun; 24(1):415. PubMed ID: 38851669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.