These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

548 related articles for article (PubMed ID: 36197662)

  • 1. Comparison of Natural Language Processing of Clinical Notes With a Validated Risk-Stratification Tool to Predict Severe Maternal Morbidity.
    Clapp MA; Kim E; James KE; Perlis RH; Kaimal AJ; McCoy TH; Easter SR
    JAMA Netw Open; 2022 Oct; 5(10):e2234924. PubMed ID: 36197662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Natural language processing of admission notes to predict severe maternal morbidity during the delivery encounter.
    Clapp MA; Kim E; James KE; Perlis RH; Kaimal AJ; McCoy TH
    Am J Obstet Gynecol; 2022 Sep; 227(3):511.e1-511.e8. PubMed ID: 35430230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of Prediction Models for Critical Care Outcomes Using Natural Language Processing of Electronic Health Record Data.
    Marafino BJ; Park M; Davies JM; Thombley R; Luft HS; Sing DC; Kazi DS; DeJong C; Boscardin WJ; Dean ML; Dudley RA
    JAMA Netw Open; 2018 Dec; 1(8):e185097. PubMed ID: 30646310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Risk of Severe Maternal Morbidity Associated with Maternal Comorbidity Burden and Social Vulnerability.
    Gulersen M; Alvarez A; Suarez F; Kouba I; Rochelson B; Combs A; Nimaroff M; Blitz MJ
    Am J Perinatol; 2024 May; 41(S 01):e3333-e3340. PubMed ID: 38057088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can We Geographically Validate a Natural Language Processing Algorithm for Automated Detection of Incidental Durotomy Across Three Independent Cohorts From Two Continents?
    Karhade AV; Oosterhoff JHF; Groot OQ; Agaronnik N; Ehresman J; Bongers MER; Jaarsma RL; Poonnoose SI; Sciubba DM; Tobert DG; Doornberg JN; Schwab JH
    Clin Orthop Relat Res; 2022 Sep; 480(9):1766-1775. PubMed ID: 35412473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of Natural Language Processing of Electronic Health Records to Measure Goals-of-Care Discussions as a Clinical Trial Outcome.
    Lee RY; Kross EK; Torrence J; Li KS; Sibley J; Cohen T; Lober WB; Engelberg RA; Curtis JR
    JAMA Netw Open; 2023 Mar; 6(3):e231204. PubMed ID: 36862411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Natural Language Processing in a Clinical Decision Support System for the Identification of Venous Thromboembolism: Algorithm Development and Validation.
    Jin ZG; Zhang H; Tai MH; Yang Y; Yao Y; Guo YT
    J Med Internet Res; 2023 Apr; 25():e43153. PubMed ID: 37093636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classifying Firearm Injury Intent in Electronic Hospital Records Using Natural Language Processing.
    MacPhaul E; Zhou L; Mooney SJ; Azrael D; Bowen A; Rowhani-Rahbar A; Yenduri R; Barber C; Goralnick E; Miller M
    JAMA Netw Open; 2023 Apr; 6(4):e235870. PubMed ID: 37022685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and Validation of a Machine Learning Model for Automated Assessment of Resident Clinical Reasoning Documentation.
    Schaye V; Guzman B; Burk-Rafel J; Marin M; Reinstein I; Kudlowitz D; Miller L; Chun J; Aphinyanaphongs Y
    J Gen Intern Med; 2022 Jul; 37(9):2230-2238. PubMed ID: 35710676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prospective validation of a machine learning model that uses provider notes to identify candidates for resective epilepsy surgery.
    Wissel BD; Greiner HM; Glauser TA; Holland-Bouley KD; Mangano FT; Santel D; Faist R; Zhang N; Pestian JP; Szczesniak RD; Dexheimer JW
    Epilepsia; 2020 Jan; 61(1):39-48. PubMed ID: 31784992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. External validation of a machine learning classifier to identify unhealthy alcohol use in hospitalized patients.
    Lin Y; Sharma B; Thompson HM; Boley R; Perticone K; Chhabra N; Afshar M; Karnik NS
    Addiction; 2022 Apr; 117(4):925-933. PubMed ID: 34729829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural language processing and machine learning to identify alcohol misuse from the electronic health record in trauma patients: development and internal validation.
    Afshar M; Phillips A; Karnik N; Mueller J; To D; Gonzalez R; Price R; Cooper R; Joyce C; Dligach D
    J Am Med Inform Assoc; 2019 Mar; 26(3):254-261. PubMed ID: 30602031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Classification of the Disposition of Patients Hospitalized with COVID-19: Reading Discharge Summaries Using Natural Language Processing.
    Fernandes M; Sun H; Jain A; Alabsi HS; Brenner LN; Ye E; Ge W; Collens SI; Leone MJ; Das S; Robbins GK; Mukerji SS; Westover MB
    JMIR Med Inform; 2021 Feb; 9(2):e25457. PubMed ID: 33449908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of Preanesthetic History Elements by a Natural Language Processing Engine.
    Suh HS; Tully JL; Meineke MN; Waterman RS; Gabriel RA
    Anesth Analg; 2022 Dec; 135(6):1162-1171. PubMed ID: 35841317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Natural Language Processing for Asthma Ascertainment in Different Practice Settings.
    Wi CI; Sohn S; Ali M; Krusemark E; Ryu E; Liu H; Juhn YJ
    J Allergy Clin Immunol Pract; 2018; 6(1):126-131. PubMed ID: 28634104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Challenges of Developing a Natural Language Processing Method With Electronic Health Records to Identify Persons With Chronic Mobility Disability.
    Agaronnik ND; Lindvall C; El-Jawahri A; He W; Iezzoni LI
    Arch Phys Med Rehabil; 2020 Oct; 101(10):1739-1746. PubMed ID: 32446905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mixed-methods evaluation of three natural language processing modeling approaches for measuring documented goals-of-care discussions in the electronic health record.
    Uyeda AM; Curtis JR; Engelberg RA; Brumback LC; Guo Y; Sibley J; Lober WB; Cohen T; Torrence J; Heywood J; Paul SR; Kross EK; Lee RY
    J Pain Symptom Manage; 2022 Jun; 63(6):e713-e723. PubMed ID: 35182715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and Validation of an Electronic Health Record-Based Machine Learning Model to Estimate Delirium Risk in Newly Hospitalized Patients Without Known Cognitive Impairment.
    Wong A; Young AT; Liang AS; Gonzales R; Douglas VC; Hadley D
    JAMA Netw Open; 2018 Aug; 1(4):e181018. PubMed ID: 30646095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of Natural Language Processing of Patient-Initiated Electronic Health Record Messages to Identify Patients With COVID-19 Infection.
    Mermin-Bunnell K; Zhu Y; Hornback A; Damhorst G; Walker T; Robichaux C; Mathew L; Jaquemet N; Peters K; Johnson TM; Wang MD; Anderson B
    JAMA Netw Open; 2023 Jul; 6(7):e2322299. PubMed ID: 37418261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of a modified obstetric comorbidity index for prediction of postpartum adverse events including fetal morbidity - a retrospective cohort study from Qatar.
    Chaalan F; Minisha F; Zaidi Z; Babekar A; Saleh HAH; Shurbak ZSB; Al Baloushi M; Alnaama A; Ahmed H; Babarinsa I; Dewik NA; Pallivalapila A; Olagundoye V; Farrell T
    BMC Pregnancy Childbirth; 2024 Jun; 24(1):415. PubMed ID: 38851669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.