These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 36197758)

  • 1. Mapping the Porous and Chemical Structure-Function Relationships of Trace CH
    Wu X; Che Y; Chen L; Amigues EJ; Wang R; He J; Dong H; Ding L
    ACS Appl Mater Interfaces; 2022 Oct; 14(41):47209-47221. PubMed ID: 36197758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accelerating In Silico Discovery of Metal-Organic Frameworks for Ethane/Ethylene and Propane/Propylene Separation: A Synergistic Approach Integrating Molecular Simulation, Machine Learning, and Active Learning.
    Daoo V; Singh JK
    ACS Appl Mater Interfaces; 2024 Feb; 16(6):6971-6987. PubMed ID: 38289235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational screening and functional tuning of chemically stable metal organic frameworks for I
    Tan H; Shan G
    iScience; 2024 Mar; 27(3):109096. PubMed ID: 38380246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functionalized metal organic frameworks for effective capture of radioactive organic iodides.
    Li B; Dong X; Wang H; Ma D; Tan K; Shi Z; Chabal YJ; Han Y; Li J
    Faraday Discuss; 2017 Sep; 201():47-61. PubMed ID: 28654114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Silico Tuning of the Pore Surface Functionality in Al-MOFs for Trace CH
    Wu X; Chen L; Amigues EJ; Wang R; Pang Z; Ding L
    ACS Omega; 2021 Jul; 6(28):18169-18177. PubMed ID: 34308048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine Learning Meets with Metal Organic Frameworks for Gas Storage and Separation.
    Altintas C; Altundal OF; Keskin S; Yildirim R
    J Chem Inf Model; 2021 May; 61(5):2131-2146. PubMed ID: 33914526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accelerating Discovery of Metal-Organic Frameworks for Methane Adsorption with Hierarchical Screening and Deep Learning.
    Wang R; Zhong Y; Bi L; Yang M; Xu D
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):52797-52807. PubMed ID: 33175490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Data Driven Discovery of MOFs for Hydrogen Gas Adsorption.
    Singh SK; Sose AT; Wang F; Bejagam KK; Deshmukh SA
    J Chem Theory Comput; 2023 Oct; 19(19):6686-6703. PubMed ID: 37756641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploiting Metal-Organic Frameworks for Vinylidene Fluoride Adsorption: From Force Field Development, Computational Screening to Machine Learning.
    Palakkal AS; Yue Y; Mohamed SA; Jiang J
    Environ Sci Technol; 2024 Sep; 58(37):16465-16474. PubMed ID: 39219302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine Learning-Assisted Computational Screening of Metal-Organic Frameworks for Atmospheric Water Harvesting.
    Li L; Shi Z; Liang H; Liu J; Qiao Z
    Nanomaterials (Basel); 2022 Jan; 12(1):. PubMed ID: 35010109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient Removal of Greenhouse Gases: Machine Learning-Assisted Exploration of Metal-Organic Framework Space.
    Xin R; Wang C; Zhang Y; Peng R; Li R; Wang J; Mao Y; Zhu X; Zhu W; Kim M; Nam HN; Yamauchi Y
    ACS Nano; 2024 Jul; ():. PubMed ID: 38951518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Do New MOFs Perform Better for CO
    Avci G; Erucar I; Keskin S
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):41567-41579. PubMed ID: 32818375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep-Learning-Based End-to-End Predictions of CO
    Lu C; Wan X; Ma X; Guan X; Zhu A
    J Chem Inf Model; 2022 Jul; 62(14):3281-3290. PubMed ID: 35574760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-Scale Computational Screening-Aided Development of High-Performance Adsorbent for Simultaneous Capture of Aromatic Volatile Organic Compounds.
    Kim SY; Shin MW; Oh KH; Bae YS
    ACS Appl Mater Interfaces; 2024 Aug; 16(33):43565-43573. PubMed ID: 39129505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. XGBoost: An Optimal Machine Learning Model with Just Structural Features to Discover MOF Adsorbents of Xe/Kr.
    Liang H; Jiang K; Yan TA; Chen GH
    ACS Omega; 2021 Apr; 6(13):9066-9076. PubMed ID: 33842776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid and Accurate Machine Learning Recognition of High Performing Metal Organic Frameworks for CO2 Capture.
    Fernandez M; Boyd PG; Daff TD; Aghaji MZ; Woo TK
    J Phys Chem Lett; 2014 Sep; 5(17):3056-60. PubMed ID: 26278259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast and Accurate Machine Learning Strategy for Calculating Partial Atomic Charges in Metal-Organic Frameworks.
    Kancharlapalli S; Gopalan A; Haranczyk M; Snurr RQ
    J Chem Theory Comput; 2021 May; 17(5):3052-3064. PubMed ID: 33739834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transition-Metal Interlink Neural Network: Machine Learning of 2D Metal-Organic Frameworks with High Magnetic Anisotropy.
    Wang P; Xing J; Jiang X; Zhao J
    ACS Appl Mater Interfaces; 2022 Jul; ():. PubMed ID: 35830170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-scale screening of hypothetical metal-organic frameworks.
    Wilmer CE; Leaf M; Lee CY; Farha OK; Hauser BG; Hupp JT; Snurr RQ
    Nat Chem; 2011 Nov; 4(2):83-9. PubMed ID: 22270624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of O
    Orhan IB; Daglar H; Keskin S; Le TC; Babarao R
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):736-749. PubMed ID: 34928569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.