BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 36197839)

  • 1. Synthetic biodegradable polyesters for implantable controlled-release devices.
    Pothupitiya JU; Zheng C; Saltzman WM
    Expert Opin Drug Deliv; 2022 Oct; 19(10):1351-1364. PubMed ID: 36197839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of dexamethasone ophthalmic implants: a comparative study of in vitro release profiles.
    Prata AI; Coimbra P; Pina ME
    Pharm Dev Technol; 2018 Mar; 23(3):218-224. PubMed ID: 28300463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of biodegradable polyesters with various microstructures for highly controlled release of epirubicin and cyclophosphamide.
    Żółtowska K; Piotrowska U; Oledzka E; Luchowska U; Sobczak M; Bocho-Janiszewska A
    Eur J Pharm Sci; 2017 Jan; 96():440-448. PubMed ID: 27742595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Advances in Polymeric Implants.
    Ahmed KK; Tamer MA; Ghareeb MM; Salem AK
    AAPS PharmSciTech; 2019 Sep; 20(7):300. PubMed ID: 31482251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradable synthetic polyesters in the technology of controlled dosage forms of antihypertensive drugs - the overview.
    Bialik M; Kuras M; Sobczak M; Oledzka E
    Expert Opin Drug Deliv; 2019 Sep; 16(9):953-967. PubMed ID: 31369295
    [No Abstract]   [Full Text] [Related]  

  • 6. Controlled release kinetics of p-aminosalicylic acid from biodegradable crosslinked polyesters for enhanced anti-mycobacterial activity.
    Dasgupta Q; Madras G; Chatterjee K
    Acta Biomater; 2016 Jan; 30():168-176. PubMed ID: 26596566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of peptide impurities in polyester matrices during implant manufacturing.
    Rothen-Weinhold A; Oudry N; Schwach-Abdellaoui K; Frutiger-Hughes S; Hughes GJ; Jeannerat D; Burger U; Besseghir K; Gurny R
    Eur J Pharm Biopharm; 2000 May; 49(3):253-7. PubMed ID: 10799817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradable implants for sustained drug release in the eye.
    Lee SS; Hughes P; Ross AD; Robinson MR
    Pharm Res; 2010 Oct; 27(10):2043-53. PubMed ID: 20535532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthetic, implantable, biodegradable polymers for controlled release of radiosensitizers.
    Yuan X; Fahlman C; Tabassi K; Williams JA
    Cancer Biother Radiopharm; 1999 Jun; 14(3):177-86. PubMed ID: 10850302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advanced fabrication approaches to controlled delivery systems for epilepsy treatment.
    van Tienderen GS; Berthel M; Yue Z; Cook M; Liu X; Beirne S; Wallace GG
    Expert Opin Drug Deliv; 2018 Sep; 15(9):915-925. PubMed ID: 30169981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of l-Amino-Acid-Based Hydroxyl Functionalized Biodegradable Amphiphilic Polyesters and Their Drug Delivery Capabilities to Cancer Cells.
    Saxena S; Jayakannan M
    Biomacromolecules; 2020 Jan; 21(1):171-187. PubMed ID: 31592651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradable polymers in controlled drug delivery.
    Heller J
    Crit Rev Ther Drug Carrier Syst; 1984; 1(1):39-90. PubMed ID: 6400195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and In Vitro Evaluation of a Slow-Release Intraocular Implant of Betamethasone.
    Rastegar Ramsheh ZS; Mohtashami Z; Kargar N; Akbari Javar H; Rafiee Tehrani M; Abedin Dorkoosh F
    AAPS PharmSciTech; 2021 Jun; 22(5):174. PubMed ID: 34114068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Tunable, Biodegradable, Thin-Film Polymer Device as a Long-Acting Implant Delivering Tenofovir Alafenamide Fumarate for HIV Pre-exposure Prophylaxis.
    Schlesinger E; Johengen D; Luecke E; Rothrock G; McGowan I; van der Straten A; Desai T
    Pharm Res; 2016 Jul; 33(7):1649-56. PubMed ID: 26975357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Advancement of Biodegradable Polyesters as Delivery Systems for Camptothecin and Its Analogues-A Status Report.
    Strzelecka K; Piotrowska U; Sobczak M; Oledzka E
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of different polymers and drug loads for fused deposition modeling of drug loaded implants.
    Kempin W; Franz C; Koster LC; Schneider F; Bogdahn M; Weitschies W; Seidlitz A
    Eur J Pharm Biopharm; 2017 Jun; 115():84-93. PubMed ID: 28232106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradable polymers for ocular drug delivery.
    Kimura H; Ogura Y
    Ophthalmologica; 2001; 215(3):143-55. PubMed ID: 11340382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implantable controlled release systems.
    Langer R
    Pharmacol Ther; 1983; 21(1):35-51. PubMed ID: 6353438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthetic, implantable polymers for IUdR radiosensitization of experimental human malignant glioma.
    Yuan X; Dillehay LE; Williams JR; Williams JA
    Cancer Biother Radiopharm; 1999 Jun; 14(3):187-202. PubMed ID: 10850303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of the test method on in vitro drug release from intravitreal model implants containing dexamethasone or fluorescein sodium in poly (d,l-lactide-co-glycolide) or polycaprolactone.
    Stein S; Auel T; Kempin W; Bogdahn M; Weitschies W; Seidlitz A
    Eur J Pharm Biopharm; 2018 Jun; 127():270-278. PubMed ID: 29490233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.