BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 36197839)

  • 21. From micro- to nanostructured implantable device for local anesthetic delivery.
    Zorzetto L; Brambilla P; Marcello E; Bloise N; De Gregori M; Cobianchi L; Peloso A; Allegri M; Visai L; Petrini P
    Int J Nanomedicine; 2016; 11():2695-709. PubMed ID: 27354799
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Clinically established biodegradable long acting injectables: An industry perspective.
    Nkanga CI; Fisch A; Rad-Malekshahi M; Romic MD; Kittel B; Ullrich T; Wang J; Krause RWM; Adler S; Lammers T; Hennink WE; Ramazani F
    Adv Drug Deliv Rev; 2020 Dec; 167():19-46. PubMed ID: 33202261
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Polymer-free corticosteroid dimer implants for controlled and sustained drug delivery.
    Battiston K; Parrag I; Statham M; Louka D; Fischer H; Mackey G; Daley A; Gu F; Baldwin E; Yang B; Muirhead B; Hicks EA; Sheardown H; Kalachev L; Crean C; Edelman J; Santerre JP; Naimark W
    Nat Commun; 2021 May; 12(1):2875. PubMed ID: 34001908
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Drug eluting implants in pharmaceutical development and clinical practice.
    Johnson AR; Forster SP; White D; Terife G; Lowinger M; Teller RS; Barrett SE
    Expert Opin Drug Deliv; 2021 May; 18(5):577-593. PubMed ID: 33275066
    [No Abstract]   [Full Text] [Related]  

  • 25. Ultra-long-acting tunable biodegradable and removable controlled release implants for drug delivery.
    Benhabbour SR; Kovarova M; Jones C; Copeland DJ; Shrivastava R; Swanson MD; Sykes C; Ho PT; Cottrell ML; Sridharan A; Fix SM; Thayer O; Long JM; Hazuda DJ; Dayton PA; Mumper RJ; Kashuba ADM; Victor Garcia J
    Nat Commun; 2019 Sep; 10(1):4324. PubMed ID: 31541085
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Controlled Delivery of Chemopreventive Agents by Polymeric Implants.
    Aqil F; Gupta RC
    Methods Mol Biol; 2016; 1379():1-11. PubMed ID: 26608285
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Polyester-based microdisc systems for sustained release of neuroprotective phosphine-borane complexes.
    Janus DA; Lieven CJ; Crowe ME; Levin LA
    Pharm Dev Technol; 2018 Nov; 23(9):882-889. PubMed ID: 28524719
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Branched biodegradable polyesters for parenteral drug delivery systems.
    Breitenbach A; Li YX; Kissel T
    J Control Release; 2000 Feb; 64(1-3):167-78. PubMed ID: 10640655
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Titania nanotube arrays for local drug delivery: recent advances and perspectives.
    Losic D; Aw MS; Santos A; Gulati K; Bariana M
    Expert Opin Drug Deliv; 2015 Jan; 12(1):103-27. PubMed ID: 25376706
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Current advances in sustained-release systems for parenteral drug delivery.
    Shi Y; Li LC
    Expert Opin Drug Deliv; 2005 Nov; 2(6):1039-58. PubMed ID: 16296808
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biodegradable vs non-biodegradable antibiotic delivery devices in the treatment of osteomyelitis.
    Kluin OS; van der Mei HC; Busscher HJ; Neut D
    Expert Opin Drug Deliv; 2013 Mar; 10(3):341-51. PubMed ID: 23289645
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Poly(ortho ester) biodegradable polymer systems.
    Heller J; Himmelstein KJ
    Methods Enzymol; 1985; 112():422-36. PubMed ID: 3930918
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Controlled Release of Usnic Acid from Biodegradable Polyesters to Inhibit Biofilm Formation.
    Dasgupta Q; Madras G; Chatterjee K
    ACS Biomater Sci Eng; 2017 Mar; 3(3):291-303. PubMed ID: 33465928
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Three-Dimensional Printed PCL-Based Implantable Prototypes of Medical Devices for Controlled Drug Delivery.
    Holländer J; Genina N; Jukarainen H; Khajeheian M; Rosling A; Mäkilä E; Sandler N
    J Pharm Sci; 2016 Sep; 105(9):2665-2676. PubMed ID: 26906174
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Manufacturing techniques of biodegradable implants intended for intraocular application.
    Fialho SL; da Silva Cunha A
    Drug Deliv; 2005; 12(2):109-16. PubMed ID: 15824036
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Aliphatic polyesters and cellulose-based polymers for controlled release applications.
    Chang RK; Price JC
    J Biomater Appl; 1988 Jul; 3(1):80-101. PubMed ID: 3058931
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Selectively Biodegradable Polyesters: Nature-Inspired Construction Materials for Future Biomedical Applications.
    Urbánek T; Jäger E; Jäger A; Hrubý M
    Polymers (Basel); 2019 Jun; 11(6):. PubMed ID: 31248100
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Feasibility of poly (ϵ-caprolactone-co-DL-lactide) as a biodegradable material for in situ forming implants: evaluation of drug release and in vivo degradation.
    Zhang X; Zhang C; Zhang W; Meng S; Liu D; Wang P; Guo J; Li J; Guan Y; Yang D
    Drug Dev Ind Pharm; 2015 Feb; 41(2):342-52. PubMed ID: 24320881
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of HPMC and MC as pore formers on the rheology of the implant microenvironment and the drug release in vitro.
    Aho J; Halme A; Boetker J; Water JJ; Bohr A; Sandler N; Rantanen J; Baldursdottir S
    Carbohydr Polym; 2017 Dec; 177():433-442. PubMed ID: 28962789
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Mechanistic Model for Acidic Drug Release Using Microspheres Made of PLGA 50:50.
    Sevim K; Pan J
    Mol Pharm; 2016 Aug; 13(8):2729-35. PubMed ID: 27398973
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.