These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 36197891)

  • 1. Locomotion control during curb descent: Bilateral ground reaction variables covary consistently during the double support phase regardless of future foot placement constraints.
    Cui C; Kulkarni A; Rietdyk S; Ambike S
    PLoS One; 2022; 17(10):e0268090. PubMed ID: 36197891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergies in the ground reaction forces and moments during double support in curb negotiation in young and older adults.
    Cui C; Kulkarni A; Rietdyk S; Barbieri FA; Ambike S
    J Biomech; 2020 Jun; 106():109837. PubMed ID: 32517974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of age-related macular degeneration and ambient light on curb negotiation.
    Alexander MS; Lajoie K; Neima DR; Strath RA; Robinovitch SN; Marigold DS
    Optom Vis Sci; 2014 Aug; 91(8):975-89. PubMed ID: 24879086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ankle muscles drive mediolateral center of pressure control to ensure stable steady state gait.
    van Leeuwen AM; van Dieën JH; Daffertshofer A; Bruijn SM
    Sci Rep; 2021 Nov; 11(1):21481. PubMed ID: 34728667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic postural control during (in)visible curb descent at fast versus comfortable walking velocity.
    AminiAghdam S; Griessbach E; Vielemeyer J; Müller R
    Gait Posture; 2019 Jun; 71():38-43. PubMed ID: 31005853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability-maneuverability trade-offs during lateral steps.
    Acasio J; Wu M; Fey NP; Gordon KE
    Gait Posture; 2017 Feb; 52():171-177. PubMed ID: 27915220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Whole-body angular momentum during stair ascent and descent.
    Silverman AK; Neptune RR; Sinitski EH; Wilken JM
    Gait Posture; 2014 Apr; 39(4):1109-14. PubMed ID: 24636222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of net ground reaction force orientation on mediolateral stability during walking.
    Rawal YR; Singer JC
    Gait Posture; 2021 Oct; 90():73-79. PubMed ID: 34418868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Between a Walk and a Hard Place: How Stepping Patterns Change While Navigating Environmental Obstacles.
    Kulkarni A; Cui C; Rietdyk S; Ambike S
    Motor Control; 2023 Jan; 27(1):20-34. PubMed ID: 36049749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Muscles do more positive than negative work in human locomotion.
    DeVita P; Helseth J; Hortobagyi T
    J Exp Biol; 2007 Oct; 210(Pt 19):3361-73. PubMed ID: 17872990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of step-down technique on lower extremity mechanics during curb descent.
    Demers T; Bednarz N; Mitchell K; Gerstle E; Almonroeder TG
    J Electromyogr Kinesiol; 2021 Dec; 61():102590. PubMed ID: 34509704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ground reaction forces and lower-limb joint kinetics of turning gait in typically developing children.
    Dixon PC; Stebbins J; Theologis T; Zavatsky AB
    J Biomech; 2014 Nov; 47(15):3726-33. PubMed ID: 25311452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Age-related changes in the control of whole-body angular momentum during stepping.
    Begue J; Peyrot N; Dalleau G; Caderby T
    Exp Gerontol; 2019 Nov; 127():110714. PubMed ID: 31479728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Balance control and lower limb joint work in children with bilateral genu valgum during level walking.
    Wu KW; Lee WC; Ho YT; Wang TM; Kuo KN; Lu TW
    Gait Posture; 2021 Oct; 90():313-319. PubMed ID: 34564004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Once-per-step control of ankle-foot prosthesis push-off work reduces effort associated with balance during walking.
    Kim M; Collins SH
    J Neuroeng Rehabil; 2015 May; 12():43. PubMed ID: 25928176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active foot placement control ensures stable gait: Effect of constraints on foot placement and ankle moments.
    van Leeuwen AM; van Dieën JH; Daffertshofer A; Bruijn SM
    PLoS One; 2020; 15(12):e0242215. PubMed ID: 33332421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ground reaction forces and muscle activity while walking on sand versus stable ground in individuals with pronated feet compared with healthy controls.
    Jafarnezhadgero A; Fatollahi A; Amirzadeh N; Siahkouhian M; Granacher U
    PLoS One; 2019; 14(9):e0223219. PubMed ID: 31557258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of age and fall history on single transition step kinematics.
    Gerstle EE; O'Connor K; Keenan KG; Slavens BA; Cobb SC
    Clin Biomech (Bristol, Avon); 2021 Oct; 89():105456. PubMed ID: 34474313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relation between frontal plane center of mass position stability and foot elevation during obstacle crossing.
    Yamagata M; Tateuchi H; Pataky T; Shimizu I; Ichihashi N
    J Biomech; 2021 Feb; 116():110219. PubMed ID: 33482594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.