These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 36197980)

  • 1. A green and sustainable strategy toward lithium resources recycling from spent batteries.
    Xu J; Jin Y; Liu K; Lyu N; Zhang Z; Sun B; Jin Q; Lu H; Tian H; Guo X; Shanmukaraj D; Wu H; Li M; Armand M; Wang G
    Sci Adv; 2022 Oct; 8(40):eabq7948. PubMed ID: 36197980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A green, efficient, closed-loop direct regeneration technology for reconstructing of the LiNi
    Fan X; Tan C; Li Y; Chen Z; Li Y; Huang Y; Pan Q; Zheng F; Wang H; Li Q
    J Hazard Mater; 2021 May; 410():124610. PubMed ID: 33243647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recovery of valuable metals from LiNi
    Zhuang L; Sun C; Zhou T; Li H; Dai A
    Waste Manag; 2019 Feb; 85():175-185. PubMed ID: 30803570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Research on the facile regeneration of degraded cathode materials from spent LiNi
    Yang C; Hao Y; Wang J; Zhang M; Song L; Qu J
    Front Chem; 2024; 12():1400758. PubMed ID: 38746018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An emission-free controlled potassium pyrosulfate roasting-assisted leaching process for selective lithium recycling from spent Li-ion batteries.
    Liu C; Ji H; Liu J; Liu P; Zeng G; Luo X; Guan Q; Mi X; Li Y; Zhang J; Tong Y; Wang Z; Wu S
    Waste Manag; 2022 Nov; 153():52-60. PubMed ID: 36049272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Na-doped Ni-rich LiNi0.5Co0.2Mn0.3O2 cathode material with both high rate capability and high tap density for lithium ion batteries.
    Hua W; Zhang J; Zheng Z; Liu W; Peng X; Guo XD; Zhong B; Wang YJ; Wang X
    Dalton Trans; 2014 Oct; 43(39):14824-32. PubMed ID: 25162932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptable Eutectic Salt for the Direct Recycling of Highly Degraded Layer Cathodes.
    Ma J; Wang J; Jia K; Liang Z; Ji G; Zhuang Z; Zhou G; Cheng HM
    J Am Chem Soc; 2022 Nov; 144(44):20306-20314. PubMed ID: 36228162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultra-fast recovery of cathode materials from spent LiFePO
    Zhu X; Chen C; Guo Q; Liu M; Zhang Y; Sun Z; Song H
    Waste Manag; 2023 Jul; 166():70-77. PubMed ID: 37156188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recovery of valuable metals from mixed types of spent lithium ion batteries. Part II: Selective extraction of lithium.
    Chen X; Cao L; Kang D; Li J; Zhou T; Ma H
    Waste Manag; 2018 Oct; 80():198-210. PubMed ID: 30455000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preferential Extraction of Lithium from Spent Cathodes and the Regeneration of Layered Oxides for Li/Na-Ion Batteries.
    Hu X; Xu C; Li X; Zhang P; Rong X; Yang C; Jian Z; Liu H; Hu YS; Zhao J
    ACS Appl Mater Interfaces; 2022 Jun; 14(21):24255-24264. PubMed ID: 35603942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Topotactic Transformation of Surface Structure Enabling Direct Regeneration of Spent Lithium-Ion Battery Cathodes.
    Jia K; Wang J; Zhuang Z; Piao Z; Zhang M; Liang Z; Ji G; Ma J; Ji H; Yao W; Zhou G; Cheng HM
    J Am Chem Soc; 2023 Apr; 145(13):7288-7300. PubMed ID: 36876987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct recovery of degraded LiCoO
    Yang H; Deng B; Jing X; Li W; Wang D
    Waste Manag; 2021 Jun; 129():85-94. PubMed ID: 34044320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Fischer-lactonization-driven mechanism for ultra-efficient recycling of spent lithium-ion batteries.
    Zhou M; Shen J; Zuo Y; Liu R; Zhao J; Zhou G
    Angew Chem Int Ed Engl; 2024 Oct; ():e202414484. PubMed ID: 39395025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Closed-loop selective recycling process of spent LiNi
    Lin J; Cui C; Zhang X; Fan E; Chen R; Wu F; Li L
    J Hazard Mater; 2022 Feb; 424(Pt D):127757. PubMed ID: 34799163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organics removal combined with in situ thermal-reduction for enhancing the liberation and metallurgy efficiency of LiCoO
    Zhang G; Yuan X; He Y; Wang H; Xie W; Zhang T
    Waste Manag; 2020 Sep; 115():113-120. PubMed ID: 32736031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A perspective on the recovery mechanisms of spent lithium iron phosphate cathode materials in different oxidation environments.
    Liu K; Wang M; Zhang Q; Xu Z; Labianca C; Komárek M; Gao B; Tsang DCW
    J Hazard Mater; 2023 Mar; 445():130502. PubMed ID: 36493647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A green and effective room-temperature recycling process of LiFePO
    Li L; Bian Y; Zhang X; Yao Y; Xue Q; Fan E; Wu F; Chen R
    Waste Manag; 2019 Feb; 85():437-444. PubMed ID: 30803599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recovery of valuable metals from spent lithium-ion batteries through biomass pyrolysis gas-induced reduction.
    Zhou F; Li X; Wang S; Qu X; Zhao J; Wang D; Chen Z; Yin H
    J Hazard Mater; 2023 Oct; 459():132150. PubMed ID: 37541117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recycling Spent Lithium-Ion Batteries Using Waste Benzene-Containing Plastics: Synergetic Thermal Reduction and Benzene Decomposition.
    Qiu B; Liu M; Qu X; Zhang B; Xie H; Wang D; Lee LYS; Yin H
    Environ Sci Technol; 2023 May; 57(19):7599-7611. PubMed ID: 37140343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acid-Free and Selective Extraction of Lithium from Spent Lithium Iron Phosphate Batteries via a Mechanochemically Induced Isomorphic Substitution.
    Liu K; Tan Q; Liu L; Li J
    Environ Sci Technol; 2019 Aug; 53(16):9781-9788. PubMed ID: 31339306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.