BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 36198065)

  • 1. ncRNAInter: a novel strategy based on graph neural network to discover interactions between lncRNA and miRNA.
    Zhang H; Wang Y; Pan Z; Sun X; Mou M; Zhang B; Li Z; Li H; Zhu F
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36198065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graph embedding ensemble methods based on the heterogeneous network for lncRNA-miRNA interaction prediction.
    Zhao C; Qiu Y; Zhou S; Liu S; Zhang W; Niu Y
    BMC Genomics; 2020 Dec; 21(Suppl 13):867. PubMed ID: 33334307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-task prediction-based graph contrastive learning for inferring the relationship among lncRNAs, miRNAs and diseases.
    Sheng N; Wang Y; Huang L; Gao L; Cao Y; Xie X; Fu Y
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37529914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BoT-Net: a lightweight bag of tricks-based neural network for efficient LncRNA-miRNA interaction prediction.
    Asim MN; Ibrahim MA; Zehe C; Trygg J; Dengel A; Ahmed S
    Interdiscip Sci; 2022 Dec; 14(4):841-862. PubMed ID: 35947255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LMI-DForest: A deep forest model towards the prediction of lncRNA-miRNA interactions.
    Wang W; Guan X; Khan MT; Xiong Y; Wei DQ
    Comput Biol Chem; 2020 Dec; 89():107406. PubMed ID: 33120126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence pre-training-based graph neural network for predicting lncRNA-miRNA associations.
    Wang Z; Liang S; Liu S; Meng Z; Wang J; Liang S
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37651605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DeepLncLoc: a deep learning framework for long non-coding RNA subcellular localization prediction based on subsequence embedding.
    Zeng M; Wu Y; Lu C; Zhang F; Wu FX; Li M
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34498677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using Network Distance Analysis to Predict lncRNA-miRNA Interactions.
    Zhang L; Yang P; Feng H; Zhao Q; Liu H
    Interdiscip Sci; 2021 Sep; 13(3):535-545. PubMed ID: 34232474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Survey of Computational Methods and Databases for lncRNA-MiRNA Interaction Prediction.
    Sheng N; Huang L; Gao L; Cao Y; Xie X; Wang Y
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(5):2810-2826. PubMed ID: 37030713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Optimized Ensemble Deep Learning Model for Predicting Plant miRNA-IncRNA Based on Artificial Gorilla Troops Algorithm.
    Hamdy W; Ismail A; Awad WA; Ibrahim AH; Hassanien AE
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GATLGEMF: A graph attention model with line graph embedding multi-complex features for ncRNA-protein interactions prediction.
    Yan J; Qu W; Li X; Wang R; Tan J
    Comput Biol Chem; 2024 Feb; 108():108000. PubMed ID: 38070456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting the potential human lncRNA-miRNA interactions based on graph convolution network with conditional random field.
    Wang W; Zhang L; Sun J; Zhao Q; Shuai J
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36305458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GM-lncLoc: LncRNAs subcellular localization prediction based on graph neural network with meta-learning.
    Cai J; Wang T; Deng X; Tang L; Liu L
    BMC Genomics; 2023 Jan; 24(1):52. PubMed ID: 36709266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting lncRNA-disease associations using network topological similarity based on deep mining heterogeneous networks.
    Zhang H; Liang Y; Peng C; Han S; Du W; Li Y
    Math Biosci; 2019 Sep; 315():108229. PubMed ID: 31323239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-channel graph attention autoencoders for disease-related lncRNAs prediction.
    Sheng N; Huang L; Wang Y; Zhao J; Xuan P; Gao L; Cao Y
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35108355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DeepLncPro: an interpretable convolutional neural network model for identifying long non-coding RNA promoters.
    Zhang T; Tang Q; Nie F; Zhao Q; Chen W
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36209437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plant miRNA-lncRNA Interaction Prediction with the Ensemble of CNN and IndRNN.
    Zhang P; Meng J; Luan Y; Liu C
    Interdiscip Sci; 2020 Mar; 12(1):82-89. PubMed ID: 31811618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NPI-GNN: Predicting ncRNA-protein interactions with deep graph neural networks.
    Shen ZA; Luo T; Zhou YK; Yu H; Du PF
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PmliPred: a method based on hybrid model and fuzzy decision for plant miRNA-lncRNA interaction prediction.
    Kang Q; Meng J; Cui J; Luan Y; Chen M
    Bioinformatics; 2020 May; 36(10):2986-2992. PubMed ID: 32087005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HeadTailTransfer: An efficient sampling method to improve the performance of graph neural network method in predicting sparse ncRNA-protein interactions.
    Wei J; Zhuo L; Pan S; Lian X; Yao X; Fu X
    Comput Biol Med; 2023 May; 157():106783. PubMed ID: 36958237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.