These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 36198079)

  • 1. Cross β Amyloid Nanotubes Demonstrate Promiscuous Catalysis in a Chemical Reaction Network via Co-option.
    Roy S; Chatterjee A; Bal S; Das D
    Angew Chem Int Ed Engl; 2022 Nov; 61(48):e202210972. PubMed ID: 36198079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complex Cascade Reaction Networks via Cross β Amyloid Nanotubes.
    Chatterjee A; Mahato C; Das D
    Angew Chem Int Ed Engl; 2021 Jan; 60(1):202-207. PubMed ID: 32956553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Covalent Catalysis by Cross β Amyloid Nanotubes.
    Sarkhel B; Chatterjee A; Das D
    J Am Chem Soc; 2020 Mar; 142(9):4098-4103. PubMed ID: 32083482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amyloid and the origin of life: self-replicating catalytic amyloids as prebiotic informational and protometabolic entities.
    Maury CPJ
    Cell Mol Life Sci; 2018 May; 75(9):1499-1507. PubMed ID: 29550973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cross β amyloid assemblies as complex catalytic machinery.
    Pal S; Goswami S; Das D
    Chem Commun (Camb); 2021 Aug; 57(62):7597-7609. PubMed ID: 34278403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic diversity in self-propagating peptide assemblies.
    Omosun TO; Hsieh MC; Childers WS; Das D; Mehta AK; Anthony NR; Pan T; Grover MA; Berland KM; Lynn DG
    Nat Chem; 2017 Aug; 9(8):805-809. PubMed ID: 28754939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Covalent Linkage and Macrocylization Preserve and Enhance Synergistic Interactions in Catalytic Amyloids.
    Lengyel-Zhand Z; Marshall LR; Jung M; Jayachandran M; Kim MC; Kriews A; Makhlynets OV; Fry HC; Geyer A; Korendovych IV
    Chembiochem; 2021 Feb; 22(3):585-591. PubMed ID: 32956537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescent Microswimmers Based on Cross-β Amyloid Nanotubes and Divergent Cascade Networks.
    Chatterjee A; Ghosh S; Ghosh C; Das D
    Angew Chem Int Ed Engl; 2022 Jul; 61(29):e202201547. PubMed ID: 35578748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systems chemistry of peptide-assemblies for biochemical transformations.
    Chatterjee A; Reja A; Pal S; Das D
    Chem Soc Rev; 2022 Apr; 51(8):3047-3070. PubMed ID: 35316323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aldolase Cascade Facilitated by Self-Assembled Nanotubes from Short Peptide Amphiphiles.
    Reja A; Afrose SP; Das D
    Angew Chem Int Ed Engl; 2020 Mar; 59(11):4329-4334. PubMed ID: 31920004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and Screening of Catalytic Amyloid Assemblies.
    Lengyel Z; Rufo CM; Korendovych IV
    Methods Mol Biol; 2018; 1777():261-270. PubMed ID: 29744841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonequilibrium Amyloid Polymers Exploit Dynamic Covalent Linkage to Temporally Control Charge-Selective Catalysis.
    Goswami S; Reja A; Pal S; Singh A; Das D
    J Am Chem Soc; 2022 Oct; 144(42):19248-19252. PubMed ID: 36219699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Grafting a short chameleon sequence from αB crystallin into a β-sheet scaffold protein.
    Hori Y; Fujiwara H; Fujiwara W; Makabe K
    Proteins; 2019 May; 87(5):416-424. PubMed ID: 30684364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembly of amylin(20-29) amide-bond derivatives into helical ribbons and peptide nanotubes rather than fibrils.
    Elgersma RC; Meijneke T; Posthuma G; Rijkers DT; Liskamp RM
    Chemistry; 2006 May; 12(14):3714-25. PubMed ID: 16528792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cu
    Klose D; Vemulapalli SPB; Richman M; Rudnick S; Aisha V; Abayev M; Chemerovski M; Shviro M; Zitoun D; Majer K; Wili N; Goobes G; Griesinger C; Jeschke G; Rahimipour S
    Phys Chem Chem Phys; 2022 Mar; 24(11):6699-6715. PubMed ID: 35234757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short peptides self-assemble to produce catalytic amyloids.
    Rufo CM; Moroz YS; Moroz OV; Stöhr J; Smith TA; Hu X; DeGrado WF; Korendovych IV
    Nat Chem; 2014 Apr; 6(4):303-9. PubMed ID: 24651196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards Prebiotic Catalytic Amyloids Using High Throughput Screening.
    Friedmann MP; Torbeev V; Zelenay V; Sobol A; Greenwald J; Riek R
    PLoS One; 2015; 10(12):e0143948. PubMed ID: 26650386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Guiding the Morphology of Amyloid Assemblies by Electrostatic Capping: from Polymorphic Twisted Fibrils to Uniform Nanorods.
    Zottig X; Al-Halifa S; Babych M; Quittot N; Archambault D; Bourgault S
    Small; 2019 Aug; 15(33):e1901806. PubMed ID: 31268238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biocatalysts Based on Peptide and Peptide Conjugate Nanostructures.
    Hamley IW
    Biomacromolecules; 2021 May; 22(5):1835-1855. PubMed ID: 33843196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic amyloids: Is misfolding folding?
    Marshall LR; Korendovych IV
    Curr Opin Chem Biol; 2021 Oct; 64():145-153. PubMed ID: 34425319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.