These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 36198129)
1. Framework and Spherical Nucleic Acids Synergistically Enhanced Electrochemiluminescence Nanosensors for Rapidly Diagnosing Acute Myocardial Infarction Based on Circulating MicroRNA Levels. Shi L; Liu C; Wang H; Zheng J; Wang Q; Shi L; Li T Anal Chem; 2022 Oct; 94(41):14394-14401. PubMed ID: 36198129 [TBL] [Abstract][Full Text] [Related]
2. Target-Induced Payload Amplification for Spherical Nucleic Acid Enzyme (SNAzyme)-Catalyzed Electrochemiluminescence Detection of Circulating microRNAs. Sun Y; Wang Q; Mi L; Shi L; Li T Anal Chem; 2019 Oct; 91(20):12948-12953. PubMed ID: 31538773 [TBL] [Abstract][Full Text] [Related]
3. Target-Catalyzed Self-Growing Spherical Nucleic Acid Enzyme (SNAzyme) as a Double Amplifier for Ultrasensitive Chemiluminescence MicroRNA Detection. Shi L; Sun Y; Mi L; Li T ACS Sens; 2019 Dec; 4(12):3219-3226. PubMed ID: 31763826 [TBL] [Abstract][Full Text] [Related]
4. Robust noncovalent spherical nucleic acid enzymes (SNAzymes) for ultrasensitive unamplified electrochemiluminescence detection of endogenous myocardial MicroRNAs. Wang H; Shi L; Wang Q; Shi L; Li T Biosens Bioelectron; 2023 Dec; 241():115687. PubMed ID: 37708686 [TBL] [Abstract][Full Text] [Related]
5. Spherical Nucleic Acid Enzyme (SNAzyme) Boosted Chemiluminescence miRNA Imaging Using a Smartphone. Sun Y; Shi L; Wang Q; Mi L; Li T Anal Chem; 2019 Mar; 91(5):3652-3658. PubMed ID: 30714722 [TBL] [Abstract][Full Text] [Related]
6. Hemin-Bridged MOF Interface with Double Amplification of G-Quadruplex Payload and DNAzyme Catalysis: Ultrasensitive Lasting Chemiluminescence MicroRNA Imaging. Mi L; Sun Y; Shi L; Li T ACS Appl Mater Interfaces; 2020 Feb; 12(7):7879-7887. PubMed ID: 31983198 [TBL] [Abstract][Full Text] [Related]
7. Proximity-Enhanced Electrochemiluminescence Sensing Platform for Effective Capturing of Exosomes and Probing Internal MicroRNAs Involved in Cancer Cell Apoptosis. Shi L; Cai H; Wang H; Wang Q; Shi L; Li T Anal Chem; 2023 Dec; 95(48):17662-17669. PubMed ID: 37991490 [TBL] [Abstract][Full Text] [Related]
8. Evaluating early apoptosis-related cellular MiRNAs with an ultrasensitive electrochemiluminescence nanoplatform. Cai H; Dong P; Li X; Wang L; Li T Analyst; 2024 Jul; 149(15):3971-3979. PubMed ID: 38940641 [TBL] [Abstract][Full Text] [Related]
9. An "off-on" electrochemiluminescent biosensor based on DNAzyme-assisted target recycling and rolling circle amplifications for ultrasensitive detection of microRNA. Zhang P; Wu X; Yuan R; Chai Y Anal Chem; 2015 Mar; 87(6):3202-7. PubMed ID: 25679541 [TBL] [Abstract][Full Text] [Related]
10. Cyclic Enzymatic Signal Amplification-Driven DNA Logic Nanodevices on Framework Nucleic Acid for Highly Sensitive Electrochemiluminescence Detection of Dual Myocardial miRNAs. Han Y; Quan K; Feng A; Ye M; Sun Y; Zhang K; Xu JJ Anal Chem; 2024 Oct; 96(39):15728-15734. PubMed ID: 39291642 [TBL] [Abstract][Full Text] [Related]
11. A Multitargeted Electrochemiluminescent Biosensor Coupling DNAzyme with Cascading Amplification for Analyzing Myocardial miRNAs. Sun Y; Fang L; Zhang Z; Yi Y; Liu S; Chen Q; Zhang J; Zhang C; He L; Zhang K Anal Chem; 2021 May; 93(20):7516-7522. PubMed ID: 33945254 [TBL] [Abstract][Full Text] [Related]
12. MicroRNA-21 electrochemiluminescence biosensor based on Co-MOF-N-(4-aminobutyl)-N-ethylisoluminol/Ti Jiang Y; Li R; He W; Li Q; Yang X; Li S; Bai W; Li Y Mikrochim Acta; 2022 Mar; 189(3):129. PubMed ID: 35237853 [TBL] [Abstract][Full Text] [Related]
13. Expression profiling and bioinformatics analysis of circulating microRNAs in patients with acute myocardial infarction. Zhong Z; Wu H; Zhong W; Zhang Q; Yu Z J Clin Lab Anal; 2020 Mar; 34(3):e23099. PubMed ID: 31721304 [TBL] [Abstract][Full Text] [Related]
14. Highly Efficient Electrochemiluminescence Based on Luminol/MoS Liu W; Su M; Chen A; Peng K; Chai Y; Yuan R Anal Chem; 2022 Jun; 94(25):9106-9113. PubMed ID: 35704448 [TBL] [Abstract][Full Text] [Related]
15. Circulating miR-22-5p and miR-122-5p are promising novel biomarkers for diagnosis of acute myocardial infarction. Wang Y; Chang W; Zhang Y; Zhang L; Ding H; Qi H; Xue S; Yu H; Hu L; Liu D; Zhu W; Wang Y; Li P J Cell Physiol; 2019 Apr; 234(4):4778-4786. PubMed ID: 30256407 [TBL] [Abstract][Full Text] [Related]
16. Circulating microRNAs: a potential role in diagnosis and prognosis of acute myocardial infarction. Sayed AS; Xia K; Yang TL; Peng J Dis Markers; 2013; 35(5):561-6. PubMed ID: 24249943 [TBL] [Abstract][Full Text] [Related]
17. Metal-organic frameworks-assisted nonenzymatic cascade amplification multiplexed strategy for sensing acute myocardial infarction related microRNAs. Cheng X; Ren D; Xu G; Wei F; Yang J; Xu J; Wang L; Hu Q; Cen Y Biosens Bioelectron; 2022 Jan; 196():113706. PubMed ID: 34678651 [TBL] [Abstract][Full Text] [Related]
18. Atherosclerosis-related circulating miRNAs as novel and sensitive predictors for acute myocardial infarction. Wang F; Long G; Zhao C; Li H; Chaugai S; Wang Y; Chen C; Wang DW PLoS One; 2014; 9(9):e105734. PubMed ID: 25184815 [TBL] [Abstract][Full Text] [Related]
19. Early diagnostic value of circulating microRNAs in patients with suspected acute myocardial infarction. Li L; Li S; Wu M; Chi C; Hu D; Cui Y; Song J; Lee C; Chen H J Cell Physiol; 2019 Aug; 234(8):13649-13658. PubMed ID: 30623425 [TBL] [Abstract][Full Text] [Related]
20. Metal Ion-Mediated Potential-Resolved Ratiometric Electrochemiluminescence Bioassay for Efficient Determination of miR-133a in Early Diagnosis of Acute Myocardial Infarction. Wang J; Haghighatbin MA; Shen W; Mi L; Cui H Anal Chem; 2020 May; 92(10):7062-7070. PubMed ID: 32337978 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]