These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 36198209)

  • 1. TLT: Recurrent fine-tuning transfer learning for water quality long-term prediction.
    Peng L; Wu H; Gao M; Yi H; Xiong Q; Yang L; Cheng S
    Water Res; 2022 Oct; 225():119171. PubMed ID: 36198209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative analysis of surface water quality prediction performance and identification of key water parameters using different machine learning models based on big data.
    Chen K; Chen H; Zhou C; Huang Y; Qi X; Shen R; Liu F; Zuo M; Zou X; Wang J; Zhang Y; Chen D; Chen X; Deng Y; Ren H
    Water Res; 2020 Mar; 171():115454. PubMed ID: 31918388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Air quality prediction at new stations using spatially transferred bi-directional long short-term memory network.
    Ma J; Li Z; Cheng JCP; Ding Y; Lin C; Xu Z
    Sci Total Environ; 2020 Feb; 705():135771. PubMed ID: 31972931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimating the incubated river water quality indicator based on machine learning and deep learning paradigms: BOD5 Prediction.
    Kim S; Alizamir M; Seo Y; Heddam S; Chung IM; Kim YO; Kisi O; Singh VP
    Math Biosci Eng; 2022 Sep; 19(12):12744-12773. PubMed ID: 36654020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporal and spatial characteristics of the water pollutant concentration in Huaihe River Basin from 2003 to 2012, China.
    Dou M; Zhang Y; Li G
    Environ Monit Assess; 2016 Sep; 188(9):522. PubMed ID: 27531013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of long-term water quality using machine learning enhanced by Bayesian optimisation.
    Yan T; Zhou A; Shen SL
    Environ Pollut; 2023 Feb; 318():120870. PubMed ID: 36526051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid decision tree-based machine learning models for short-term water quality prediction.
    Lu H; Ma X
    Chemosphere; 2020 Jun; 249():126169. PubMed ID: 32078849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep learning based regression for optically inactive inland water quality parameter estimation using airborne hyperspectral imagery.
    Niu C; Tan K; Jia X; Wang X
    Environ Pollut; 2021 Oct; 286():117534. PubMed ID: 34119861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extreme learning machines: a new approach for modeling dissolved oxygen (DO) concentration with and without water quality variables as predictors.
    Heddam S; Kisi O
    Environ Sci Pollut Res Int; 2017 Jul; 24(20):16702-16724. PubMed ID: 28560629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of Machine Learning for eutrophication analysis and algal bloom prediction in an urban river: A 10-year study of the Han River, South Korea.
    Ly QV; Nguyen XC; Lê NC; Truong TD; Hoang TT; Park TJ; Maqbool T; Pyo J; Cho KH; Lee KS; Hur J
    Sci Total Environ; 2021 Nov; 797():149040. PubMed ID: 34311376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A hybrid evolutionary data driven model for river water quality early warning.
    Burchard-Levine A; Liu S; Vince F; Li M; Ostfeld A
    J Environ Manage; 2014 Oct; 143():8-16. PubMed ID: 24833523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water quality prediction based on recurrent neural network and improved evidence theory: a case study of Qiantang River, China.
    Li L; Jiang P; Xu H; Lin G; Guo D; Wu H
    Environ Sci Pollut Res Int; 2019 Jul; 26(19):19879-19896. PubMed ID: 31093910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biologically relevant transfer learning improves transcription factor binding prediction.
    Novakovsky G; Saraswat M; Fornes O; Mostafavi S; Wasserman WW
    Genome Biol; 2021 Sep; 22(1):280. PubMed ID: 34579793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Four Major South Korea's Rivers Using Deep Learning Models.
    Lee S; Lee D
    Int J Environ Res Public Health; 2018 Jun; 15(7):. PubMed ID: 29937531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water Quality Prediction Based on Multi-Task Learning.
    Wu H; Cheng S; Xin K; Ma N; Chen J; Tao L; Gao M
    Int J Environ Res Public Health; 2022 Aug; 19(15):. PubMed ID: 35955054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water quality assessment of a river using deep learning Bi-LSTM methodology: forecasting and validation.
    Khullar S; Singh N
    Environ Sci Pollut Res Int; 2022 Feb; 29(9):12875-12889. PubMed ID: 33988840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Research progress and application of retention time prediction method based on deep learning].
    DU Z; Shao W; Qin W
    Se Pu; 2021 Mar; 39(3):211-218. PubMed ID: 34227303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A water quality prediction model based on variational mode decomposition and the least squares support vector machine optimized by the sparrow search algorithm (VMD-SSA-LSSVM) of the Yangtze River, China.
    Song C; Yao L; Hua C; Ni Q
    Environ Monit Assess; 2021 May; 193(6):363. PubMed ID: 34041601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the performance of decision tree (DT) algorithms and extreme learning machine (ELM) model in the prediction of water quality of the Upper Green River watershed.
    Anmala J; Turuganti V
    Water Environ Res; 2021 Nov; 93(11):2360-2373. PubMed ID: 34528328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial heterogeneity modeling of water quality based on random forest regression and model interpretation.
    Wang F; Wang Y; Zhang K; Hu M; Weng Q; Zhang H
    Environ Res; 2021 Nov; 202():111660. PubMed ID: 34265353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.