These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 36198214)

  • 21. Optimizing the Leaching Parameters and Studying the Kinetics of Copper Recovery from Waste Printed Circuit Boards.
    Hao J; Wang X; Wang Y; Wu Y; Guo F
    ACS Omega; 2022 Feb; 7(4):3689-3699. PubMed ID: 35128277
    [TBL] [Abstract][Full Text] [Related]  

  • 22. O
    Ilyas S; Srivastava RR; Kim H
    J Hazard Mater; 2021 Aug; 416():125769. PubMed ID: 33857808
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dismantling of Waste Printed Circuit Boards with the Simultaneous Recovery of Copper: Experimental Study and Process Modeling.
    Fogarasi S; Imre-Lucaci Á; Imre-Lucaci F
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576406
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An innovative method of recycling metals in printed circuit board (PCB) using solutions from PCB production.
    Tan Q; Liu L; Yu M; Li J
    J Hazard Mater; 2020 May; 390():121892. PubMed ID: 31883733
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Copper recovery from waste printed circuit boards by the flotation-leaching process optimized using response surface methodology.
    Wang C; Sun R; Xing B
    J Air Waste Manag Assoc; 2021 Dec; 71(12):1483-1491. PubMed ID: 33433266
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Process development for recovery of copper and precious metals from waste printed circuit boards with emphasize on palladium and gold leaching and precipitation.
    Behnamfard A; Salarirad MM; Veglio F
    Waste Manag; 2013 Nov; 33(11):2354-63. PubMed ID: 23927928
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Printed circuit board recycling: Physical processing and copper extraction by selective leaching.
    Silvas FP; Correa MM; Caldas MP; de Moraes VT; Espinosa DC; Tenório JA
    Waste Manag; 2015 Dec; 46():503-10. PubMed ID: 26323203
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Review on the gentle hydrometallurgical treatment of WPCBs: Sustainable and selective gradient process for multiple valuable metals recovery.
    Li XG; Gao Q; Jiang SQ; Nie CC; Zhu XN; Jiao TT
    J Environ Manage; 2023 Dec; 348():119288. PubMed ID: 37864943
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Facile and Cost-Effective Approach for Copper Recovery from Waste Printed Circuit Boards via a Sequential Mechanochemical/Leaching/Recrystallization Process.
    Liu K; Yang J; Hou H; Liang S; Chen Y; Wang J; Liu B; Xiao K; Hu J; Deng H
    Environ Sci Technol; 2019 Mar; 53(5):2748-2757. PubMed ID: 30698959
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A new membrane electro-deposition based process for tin recovery from waste printed circuit boards.
    Jian-Guang Y; Jie L; Si-Yao P; Yuan-Lu L; Wei-Qiang S
    J Hazard Mater; 2016 Mar; 304():409-16. PubMed ID: 26595900
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fungal biotechnology for urban mining of metals from waste printed circuit boards: A review.
    Trivedi A; Vishwakarma A; Saawarn B; Mahanty B; Hait S
    J Environ Manage; 2022 Dec; 323():116133. PubMed ID: 36099867
    [TBL] [Abstract][Full Text] [Related]  

  • 32. NOx removal and copper recovery from the leaching process for waste printed circuit boards: performance evaluation and potential environmental impact assessment.
    Chen TL; Chen YS; Chiang PC; Chen YH; Hsu CH
    Environ Sci Pollut Res Int; 2024 Feb; 31(7):9935-9947. PubMed ID: 37004617
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recovery of Cu and Zn from waste printed circuit boards using super-gravity separation.
    Meng L; Zhong Y; Guo L; Wang Z; Chen K; Guo Z
    Waste Manag; 2018 Aug; 78():559-565. PubMed ID: 32559945
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Study on the influence of various factors in the hydrometallurgical processing of waste printed circuit boards for copper and gold recovery.
    Birloaga I; De Michelis I; Ferella F; Buzatu M; Vegliò F
    Waste Manag; 2013 Apr; 33(4):935-41. PubMed ID: 23374398
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A long-term static immersion experiment on the leaching behavior of heavy metals from waste printed circuit boards.
    Zhao GH; Luo XZ; Chen G; Zhao YJ
    Environ Sci Process Impacts; 2014 Aug; 16(8):1967-74. PubMed ID: 24934650
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Separating and recycling metal mixture of pyrolyzed waste printed circuit boards by a combined method.
    Chen B; He J; Sun X; Zhao J; Jiang H; Zhang L
    Waste Manag; 2020 Apr; 107():113-120. PubMed ID: 32278216
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integrated bioleaching of copper metal from waste printed circuit board-a comprehensive review of approaches and challenges.
    Awasthi AK; Zeng X; Li J
    Environ Sci Pollut Res Int; 2016 Nov; 23(21):21141-21156. PubMed ID: 27678000
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Copper recovery and gold enrichment from waste printed circuit boards by mediated electrochemical oxidation.
    Fogarasi S; Imre-Lucaci F; Imre-Lucaci A; Ilea P
    J Hazard Mater; 2014 May; 273():215-21. PubMed ID: 24747374
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydrometallurgical recovery of silver and gold from waste printed circuit boards and treatment of the wastewater in a biofilm reactor: An integrated pilot application.
    Vlasopoulos D; Mendrinou P; Oustadakis P; Kousi P; Stergiou A; Karamoutsos SD; Hatzikioseyian A; Tsakiridis PE; Remoundaki E; Agatzini-Leonardou S
    J Environ Manage; 2023 Oct; 344():118334. PubMed ID: 37354591
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bioleaching waste printed circuit boards by Acidithiobacillus ferrooxidans and its kinetics aspect.
    Yang Y; Chen S; Li S; Chen M; Chen H; Liu B
    J Biotechnol; 2014 Mar; 173():24-30. PubMed ID: 24445171
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.