BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 36198232)

  • 1. Effects of in vivo fatigue-induced microdamage on local subchondral bone strains.
    Malekipour F; Hitchens PL; Whitton RC; Vee-Sin Lee P
    J Mech Behav Biomed Mater; 2022 Dec; 136():105491. PubMed ID: 36198232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of in vivo fatigue-induced subchondral bone microdamage on the mechanical response of cartilage-bone under a single impact compression.
    Malekipour F; Hitchens PL; Whitton RC; Lee PV
    J Biomech; 2020 Feb; 100():109594. PubMed ID: 31924348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of subchondral bone microdamage quantification using contrast-enhanced imaging techniques.
    Ayodele BA; Malekipour F; Pagel CN; Mackie EJ; Whitton RC
    J Anat; 2024 Jul; 245(1):58-69. PubMed ID: 38481117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Equine subchondral bone failure threshold under impact compression applied through articular cartilage.
    Malekipour F; Oetomo D; Lee PV
    J Biomech; 2016 Jul; 49(10):2053-2059. PubMed ID: 27260020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shock absorbing ability of articular cartilage and subchondral bone under impact compression.
    Malekipour F; Whitton C; Oetomo D; Lee PV
    J Mech Behav Biomed Mater; 2013 Oct; 26():127-35. PubMed ID: 23746699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subchondral bone microarchitecture and failure mechanism under compression: A finite element study.
    Malekipour F; Oetomo D; Lee PV
    J Biomech; 2017 Apr; 55():85-91. PubMed ID: 28284669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical and Microstructural Properties of Subchondral Bone From Three Metacarpophalangeal Joint Sites in Thoroughbred Racehorses.
    Pearce DJ; Hitchens PL; Malekipour F; Ayodele B; Lee PVS; Whitton RC
    Front Vet Sci; 2022; 9():923356. PubMed ID: 35847629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical response of local regions of subchondral bone under physiological loading conditions.
    Shaktivesh S; Malekipour F; Whitton RC; Lee PV
    J Mech Behav Biomed Mater; 2024 Apr; 152():106405. PubMed ID: 38271752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical testing of the calcified metacarpal articular surface and its association with subchondral bone microstructure in Thoroughbred racehorses.
    Williamson AJ; Sims NA; Thomas CDL; Lee PVS; Stevenson MA; Whitton RC
    Equine Vet J; 2018 Mar; 50(2):255-260. PubMed ID: 28833497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stiffness and energy dissipation across the superficial and deeper third metacarpal subchondral bone in Thoroughbred racehorses under high-rate compression.
    Malekipour F; Whitton CR; Lee PV
    J Mech Behav Biomed Mater; 2018 Sep; 85():51-56. PubMed ID: 29852352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a method to investigate strain distribution across the cartilage-bone interface in guinea pig model of spontaneous osteoarthritis using lab-based contrast enhanced X-ray-computed tomography and digital volume correlation.
    Davis S; Karali A; Zekonyte J; Roldo M; Blunn G
    J Mech Behav Biomed Mater; 2023 Aug; 144():105999. PubMed ID: 37406483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subchondral bone microdamage accumulation in distal metacarpus of Thoroughbred racehorses.
    Whitton RC; Ayodele BA; Hitchens PL; Mackie EJ
    Equine Vet J; 2018 Nov; 50(6):766-773. PubMed ID: 29660153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Biomechanical and Structural Comparison of Articular Cartilage and Subchondral Bone of the Glenoid and Humeral Head.
    Loy BN; Zimel M; Gowda AL; Tooley TR; Maerz T; Bicos J; Guettler J
    Orthop J Sports Med; 2018 Jul; 6(7):2325967118785854. PubMed ID: 30046634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatiotemporal characterization of microdamage accumulation in rat ulnae in response to uniaxial compressive fatigue loading.
    Zhang X; Liu X; Yan Z; Cai J; Kang F; Shan S; Wang P; Zhai M; Edward Guo X; Luo E; Jing D
    Bone; 2018 Mar; 108():156-164. PubMed ID: 29331298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial correlations of trabecular bone microdamage with local stresses and strains using rigid image registration.
    Nagaraja S; Skrinjar O; Guldberg RE
    J Biomech Eng; 2011 Jun; 133(6):064502. PubMed ID: 21744931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatigue microcracks that initiate fracture are located near elevated intracortical porosity but not elevated mineralization.
    Turnbull TL; Baumann AP; Roeder RK
    J Biomech; 2014 Sep; 47(12):3135-42. PubMed ID: 25065731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The relationship between microstructure, stiffness and compressive fatigue life of equine subchondral bone.
    Martig S; Hitchens PL; Lee PVS; Whitton RC
    J Mech Behav Biomed Mater; 2020 Jan; 101():103439. PubMed ID: 31557658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trabecular bone microdamage and microstructural stresses under uniaxial compression.
    Nagaraja S; Couse TL; Guldberg RE
    J Biomech; 2005 Apr; 38(4):707-16. PubMed ID: 15713291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of subchondral bone properties and changes in development of load-induced osteoarthritis in mice.
    Adebayo OO; Ko FC; Wan PT; Goldring SR; Goldring MB; Wright TM; van der Meulen MCH
    Osteoarthritis Cartilage; 2017 Dec; 25(12):2108-2118. PubMed ID: 28919430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subchondral bone failure in an equine model of overload arthrosis.
    Norrdin RW; Kawcak CE; Capwell BA; McIlwraith CW
    Bone; 1998 Feb; 22(2):133-9. PubMed ID: 9477236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.