These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 36198368)

  • 1. Computational prediction of Calu-3-based in vitro pulmonary permeability of chemicals.
    Lin HL; Chiu YW; Wang CC; Tung CW
    Regul Toxicol Pharmacol; 2022 Nov; 135():105265. PubMed ID: 36198368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ensemble learning for predicting ex vivo human placental barrier permeability.
    Chou CY; Lin P; Kim J; Wang SS; Wang CC; Tung CW
    BMC Bioinformatics; 2022 Sep; 22(Suppl 10):629. PubMed ID: 36138350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multitask learning for predicting pulmonary absorption of chemicals.
    Chiu YW; Tung CW; Wang CC
    Food Chem Toxicol; 2024 Mar; 185():114453. PubMed ID: 38244667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Permeability characteristics of calu-3 human bronchial epithelial cells: in vitro-in vivo correlation to predict lung absorption in rats.
    Mathia NR; Timoszyk J; Stetsko PI; Megill JR; Smith RL; Wall DA
    J Drug Target; 2002 Feb; 10(1):31-40. PubMed ID: 11996084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The characterization of the human cell line Calu-3 under different culture conditions and its use as an optimized in vitro model to investigate bronchial epithelial function.
    Kreft ME; Jerman UD; Lasič E; Hevir-Kene N; Rižner TL; Peternel L; Kristan K
    Eur J Pharm Sci; 2015 Mar; 69():1-9. PubMed ID: 25555374
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Tsanaktsidou E; Krestenitis M; Karavasili C; Zacharis CK; Fatouros DG; Markopoulou CK
    Drug Dev Ind Pharm; 2023 Mar; 49(3):249-259. PubMed ID: 37014319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting the reproductive toxicity of chemicals using ensemble learning methods and molecular fingerprints.
    Feng H; Zhang L; Li S; Liu L; Yang T; Yang P; Zhao J; Arkin IT; Liu H
    Toxicol Lett; 2021 Apr; 340():4-14. PubMed ID: 33421549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Qualitative and quantitative structure-activity relationship modelling for predicting blood-brain barrier permeability of structurally diverse chemicals.
    Gupta S; Basant N; Singh KP
    SAR QSAR Environ Res; 2015; 26(2):95-124. PubMed ID: 25629764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active Mediated Transport of Chloramphenicol and Thiamphenicol in a Calu-3 Lung Epithelial Cell Model.
    Nurbaeti SN; Olivier JC; Adier C; Marchand S; Couet W; Brillault J
    J Pharm Sci; 2018 Apr; 107(4):1178-1184. PubMed ID: 29221992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suitability and functional characterization of two Calu-3 cell models for prediction of drug permeability across the airway epithelial barrier.
    Sibinovska N; Žakelj S; Roškar R; Kristan K
    Int J Pharm; 2020 Jul; 585():119484. PubMed ID: 32485216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional and cytometric examination of different human lung epithelial cell types as drug transport barriers.
    Min KA; Rosania GR; Kim CK; Shin MC
    Arch Pharm Res; 2016 Mar; 39(3):359-69. PubMed ID: 26746641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human respiratory epithelial cell culture for drug delivery applications.
    Forbes B; Ehrhardt C
    Eur J Pharm Biopharm; 2005 Jul; 60(2):193-205. PubMed ID: 15939233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developing QSAR Models with Defined Applicability Domains on PPARγ Binding Affinity Using Large Data Sets and Machine Learning Algorithms.
    Wang Z; Chen J; Hong H
    Environ Sci Technol; 2021 May; 55(10):6857-6866. PubMed ID: 33914508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Silico Predictions of Human Skin Permeability using Nonlinear Quantitative Structure-Property Relationship Models.
    Baba H; Takahara J; Mamitsuka H
    Pharm Res; 2015 Jul; 32(7):2360-71. PubMed ID: 25616540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative estimation of drug permeation through nasal mucosa using in vitro membrane permeability across Calu-3 cell layers for predicting in vivo bioavailability after intranasal administration to rats.
    Inoue D; Furubayashi T; Tanaka A; Sakane T; Sugano K
    Eur J Pharm Biopharm; 2020 Apr; 149():145-153. PubMed ID: 32057906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling the bronchial barrier in pulmonary drug delivery: A human bronchial epithelial cell line supplemented with human tracheal mucus.
    Murgia X; Yasar H; Carvalho-Wodarz C; Loretz B; Gordon S; Schwarzkopf K; Schaefer U; Lehr CM
    Eur J Pharm Biopharm; 2017 Sep; 118():79-88. PubMed ID: 28373109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of permeability alteration and epithelial-mesenchymal transition induced by transforming growth factor-β
    Togami K; Yamaguchi K; Chono S; Tada H
    J Pharmacol Toxicol Methods; 2017 Jul; 86():19-27. PubMed ID: 28259823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting human intestinal absorption of diverse chemicals using ensemble learning based QSAR modeling approaches.
    Basant N; Gupta S; Singh KP
    Comput Biol Chem; 2016 Apr; 61():178-96. PubMed ID: 26881740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binary classification of a large collection of environmental chemicals from estrogen receptor assays by quantitative structure-activity relationship and machine learning methods.
    Zang Q; Rotroff DM; Judson RS
    J Chem Inf Model; 2013 Dec; 53(12):3244-61. PubMed ID: 24279462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developing Enhanced Blood-Brain Barrier Permeability Models: Integrating External Bio-Assay Data in QSAR Modeling.
    Wang W; Kim MT; Sedykh A; Zhu H
    Pharm Res; 2015 Sep; 32(9):3055-65. PubMed ID: 25862462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.