BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 36198874)

  • 1. Enhancing sampling of water rehydration upon ligand binding using variants of grand canonical Monte Carlo.
    Ge Y; Melling OJ; Dong W; Essex JW; Mobley DL
    J Comput Aided Mol Des; 2022 Oct; 36(10):767-779. PubMed ID: 36198874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing Sampling of Water Rehydration on Ligand Binding: A Comparison of Techniques.
    Ge Y; Wych DC; Samways ML; Wall ME; Essex JW; Mobley DL
    J Chem Theory Comput; 2022 Mar; 18(3):1359-1381. PubMed ID: 35148093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Grand Canonical Sampling of Occluded Water Sites Using Nonequilibrium Candidate Monte Carlo.
    Melling OJ; Samways ML; Ge Y; Mobley DL; Essex JW
    J Chem Theory Comput; 2023 Feb; 19(3):1050-1062. PubMed ID: 36692215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing water sampling of buried binding sites using nonequilibrium candidate Monte Carlo.
    Bergazin TD; Ben-Shalom IY; Lim NM; Gill SC; Gilson MK; Mobley DL
    J Comput Aided Mol Des; 2021 Feb; 35(2):167-177. PubMed ID: 32968887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing Water Sampling in Free Energy Calculations with Grand Canonical Monte Carlo.
    Ross GA; Russell E; Deng Y; Lu C; Harder ED; Abel R; Wang L
    J Chem Theory Comput; 2020 Oct; 16(10):6061-6076. PubMed ID: 32955877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding Modes of Ligands Using Enhanced Sampling (BLUES): Rapid Decorrelation of Ligand Binding Modes via Nonequilibrium Candidate Monte Carlo.
    Gill SC; Lim NM; Grinaway PB; Rustenburg AS; Fass J; Ross GA; Chodera JD; Mobley DL
    J Phys Chem B; 2018 May; 122(21):5579-5598. PubMed ID: 29486559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computation of binding free energy with molecular dynamics and grand canonical Monte Carlo simulations.
    Deng Y; Roux B
    J Chem Phys; 2008 Mar; 128(11):115103. PubMed ID: 18361618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. py-MCMD: Python Software for Performing Hybrid Monte Carlo/Molecular Dynamics Simulations with GOMC and NAMD.
    Barhaghi MS; Crawford B; Schwing G; Hardy DJ; Stone JE; Schwiebert L; Potoff J; Tajkhorshid E
    J Chem Theory Comput; 2022 Aug; 18(8):4983-4994. PubMed ID: 35621307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient Sampling of Cavity Hydration in Proteins with Nonequilibrium Grand Canonical Monte Carlo and Polarizable Force Fields.
    Deng J; Cui Q
    J Chem Theory Comput; 2024 Mar; 20(5):1897-1911. PubMed ID: 38417108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of Ionic Hydration Free Energies with Grand Canonical Monte Carlo/Molecular Dynamics Simulations in Explicit Water.
    Sun D; Lakkaraju SK; Jo S; MacKerell AD
    J Chem Theory Comput; 2018 Oct; 14(10):5290-5302. PubMed ID: 30183291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sampling of Organic Solutes in Aqueous and Heterogeneous Environments Using Oscillating Excess Chemical Potentials in Grand Canonical-like Monte Carlo-Molecular Dynamics Simulations.
    Lakkaraju SK; Raman EP; Yu W; MacKerell AD
    J Chem Theory Comput; 2014 Jun; 10(6):2281-2290. PubMed ID: 24932136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of Grand Canonical and Conventional Molecular Dynamics Simulation Methods for Protein-Bound Water Networks.
    Ekberg V; Samways ML; Misini Ignjatović M; Essex JW; Ryde U
    ACS Phys Chem Au; 2022 May; 2(3):247-259. PubMed ID: 35637786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GPU-specific algorithms for improved solute sampling in grand canonical Monte Carlo simulations.
    Zhao M; Kognole AA; Jo S; Tao A; Hazel A; MacKerell AD
    J Comput Chem; 2023 Jul; 44(20):1719-1732. PubMed ID: 37093676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of ribosomal modification on the binding of the antibiotic telithromycin using a combined grand canonical monte carlo/molecular dynamics simulation approach.
    Small MC; Lopes P; Andrade RB; Mackerell AD
    PLoS Comput Biol; 2013; 9(6):e1003113. PubMed ID: 23785274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accelerating Convergence of Free Energy Computations with Hamiltonian Simulated Annealing of Solvent (HSAS).
    Jiang W
    J Chem Theory Comput; 2019 Apr; 15(4):2179-2186. PubMed ID: 30821969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. grand: A Python Module for Grand Canonical Water Sampling in OpenMM.
    Samways ML; Bruce Macdonald HE; Essex JW
    J Chem Inf Model; 2020 Oct; 60(10):4436-4441. PubMed ID: 32835483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validating the Water Flooding Approach by Comparing It to Grand Canonical Monte Carlo Simulations.
    Yoon H; Kolev V; Warshel A
    J Phys Chem B; 2017 Oct; 121(40):9358-9365. PubMed ID: 28911225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Grand canonical Monte Carlo molecular and thermodynamic predictions of ion effects on binding of an oligocation (L8+) to the center of DNA oligomers.
    Olmsted MC; Bond JP; Anderson CF; Record MT
    Biophys J; 1995 Feb; 68(2):634-47. PubMed ID: 7696515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing the Predictive Power of Relative Binding Free Energy Calculations for Test Cases Involving Displacement of Binding Site Water Molecules.
    Wahl J; Smieško M
    J Chem Inf Model; 2019 Feb; 59(2):754-765. PubMed ID: 30640456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sampling Conformational Changes of Bound Ligands Using Nonequilibrium Candidate Monte Carlo and Molecular Dynamics.
    Sasmal S; Gill SC; Lim NM; Mobley DL
    J Chem Theory Comput; 2020 Mar; 16(3):1854-1865. PubMed ID: 32058713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.