These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 36199072)
1. Prognosis of lasso-like penalized Cox models with tumor profiling improves prediction over clinical data alone and benefits from bi-dimensional pre-screening. Jardillier R; Koca D; Chatelain F; Guyon L BMC Cancer; 2022 Oct; 22(1):1045. PubMed ID: 36199072 [TBL] [Abstract][Full Text] [Related]
2. High-dimensional Cox models: the choice of penalty as part of the model building process. Benner A; Zucknick M; Hielscher T; Ittrich C; Mansmann U Biom J; 2010 Feb; 52(1):50-69. PubMed ID: 20166132 [TBL] [Abstract][Full Text] [Related]
3. Multi-omics facilitated variable selection in Cox-regression model for cancer prognosis prediction. Liu C; Wang X; Genchev GZ; Lu H Methods; 2017 Jul; 124():100-107. PubMed ID: 28627406 [TBL] [Abstract][Full Text] [Related]
4. Pan-cancer evaluation of gene expression and somatic alteration data for cancer prognosis prediction. Zheng X; Amos CI; Frost HR BMC Cancer; 2021 Sep; 21(1):1053. PubMed ID: 34563154 [TBL] [Abstract][Full Text] [Related]
5. Combined Performance of Screening and Variable Selection Methods in Ultra-High Dimensional Data in Predicting Time-To-Event Outcomes. Pi L; Halabi S Diagn Progn Res; 2018; 2():. PubMed ID: 30393771 [TBL] [Abstract][Full Text] [Related]
6. Large-scale benchmark study of survival prediction methods using multi-omics data. Herrmann M; Probst P; Hornung R; Jurinovic V; Boulesteix AL Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32823283 [TBL] [Abstract][Full Text] [Related]
7. Identification of clinically relevant features in hypertensive patients using penalized regression: a case study of cardiovascular events. Garcia-Carretero R; Barquero-Perez O; Mora-Jimenez I; Soguero-Ruiz C; Goya-Esteban R; Ramos-Lopez J Med Biol Eng Comput; 2019 Sep; 57(9):2011-2026. PubMed ID: 31346948 [TBL] [Abstract][Full Text] [Related]
8. Robust estimation of the expected survival probabilities from high-dimensional Cox models with biomarker-by-treatment interactions in randomized clinical trials. Ternès N; Rotolo F; Michiels S BMC Med Res Methodol; 2017 May; 17(1):83. PubMed ID: 28532387 [TBL] [Abstract][Full Text] [Related]
9. Comparison of Cox Model Methods in A Low-dimensional Setting with Few Events. Ojeda FM; Müller C; Börnigen D; Trégouët DA; Schillert A; Heinig M; Zeller T; Schnabel RB Genomics Proteomics Bioinformatics; 2016 Aug; 14(4):235-43. PubMed ID: 27224515 [TBL] [Abstract][Full Text] [Related]
10. A novel non-negative Bayesian stacking modeling method for Cancer survival prediction using high-dimensional omics data. Shen J; Wang S; Sun H; Huang J; Bai L; Wang X; Dong Y; Tang Z BMC Med Res Methodol; 2024 May; 24(1):105. PubMed ID: 38702624 [TBL] [Abstract][Full Text] [Related]
11. Optimal microRNA Sequencing Depth to Predict Cancer Patient Survival with Random Forest and Cox Models. Jardillier R; Koca D; Chatelain F; Guyon L Genes (Basel); 2022 Dec; 13(12):. PubMed ID: 36553544 [TBL] [Abstract][Full Text] [Related]
12. IPF-LASSO: Integrative Boulesteix AL; De Bin R; Jiang X; Fuchs M Comput Math Methods Med; 2017; 2017():7691937. PubMed ID: 28546826 [TBL] [Abstract][Full Text] [Related]
13. Improving survival prediction using a novel feature selection and feature reduction framework based on the integration of clinical and molecular data. Neums L; Meier R; Koestler DC; Thompson JA Pac Symp Biocomput; 2020; 25():415-426. PubMed ID: 31797615 [TBL] [Abstract][Full Text] [Related]
14. Accounting for grouped predictor variables or pathways in high-dimensional penalized Cox regression models. Belhechmi S; Bin R; Rotolo F; Michiels S BMC Bioinformatics; 2020 Jul; 21(1):277. PubMed ID: 32615919 [TBL] [Abstract][Full Text] [Related]
15. HDMAC: A Web-Based Interactive Program for High-Dimensional Analysis of Molecular Alterations in Cancer. Chang C; Sung CY; Hsiao H; Chen J; Chen IH; Kuo WT; Cheng LF; Korla PK; Chung MJ; Wu PJ; Yu CC; Sheu JJ Sci Rep; 2020 Mar; 10(1):3953. PubMed ID: 32127576 [TBL] [Abstract][Full Text] [Related]
16. A plea for taking all available clinical information into account when assessing the predictive value of omics data. Volkmann A; De Bin R; Sauerbrei W; Boulesteix AL BMC Med Res Methodol; 2019 Jul; 19(1):162. PubMed ID: 31340753 [TBL] [Abstract][Full Text] [Related]
17. Survival prediction from clinico-genomic models--a comparative study. Bøvelstad HM; Nygård S; Borgan O BMC Bioinformatics; 2009 Dec; 10():413. PubMed ID: 20003386 [TBL] [Abstract][Full Text] [Related]
18. Does combining numerous data types in multi-omics data improve or hinder performance in survival prediction? Insights from a large-scale benchmark study. Li Y; Herold T; Mansmann U; Hornung R BMC Med Inform Decis Mak; 2024 Sep; 24(1):244. PubMed ID: 39223659 [TBL] [Abstract][Full Text] [Related]
19. C-mix: A high-dimensional mixture model for censored durations, with applications to genetic data. Bussy S; Guilloux A; Gaïffas S; Jannot AS Stat Methods Med Res; 2019 May; 28(5):1523-1539. PubMed ID: 29658407 [TBL] [Abstract][Full Text] [Related]
20. Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone. Lee CC; Chen CW; Yen HK; Lin YP; Lai CY; Wang JL; Groot OQ; Janssen SJ; Schwab JH; Hsu FM; Lin WH Clin Orthop Relat Res; 2024 Dec; 482(12):2193-2208. PubMed ID: 39051924 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]