These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 36199205)
1. Enzyme 1 of the phosphoenolpyruvate:sugar phosphotransferase system is involved in resistance to MreB disruption in wild-type and ∆envC cells. Sloan R; Surber J; Roy EJ; Hartig E; Morgenstein RM Mol Microbiol; 2022 Nov; 118(5):588-600. PubMed ID: 36199205 [TBL] [Abstract][Full Text] [Related]
2. A fail-safe mechanism in the septal ring assembly pathway generated by the sequential recruitment of cell separation amidases and their activators. Peters NT; Dinh T; Bernhardt TG J Bacteriol; 2011 Sep; 193(18):4973-83. PubMed ID: 21764913 [TBL] [Abstract][Full Text] [Related]
3. Do the divisome and elongasome share a common evolutionary past? Szwedziak P; Löwe J Curr Opin Microbiol; 2013 Dec; 16(6):745-51. PubMed ID: 24094808 [TBL] [Abstract][Full Text] [Related]
4. Disruption of the MreB Elongasome Is Overcome by Mutations in the Tricarboxylic Acid Cycle. Barton B; Grinnell A; Morgenstein RM Front Microbiol; 2021; 12():664281. PubMed ID: 33968001 [TBL] [Abstract][Full Text] [Related]
5. Elongation at Midcell in Preparation of Cell Division Requires FtsZ, but Not MreB nor PBP2 in van Teeseling MCF Front Microbiol; 2021; 12():732031. PubMed ID: 34512611 [TBL] [Abstract][Full Text] [Related]
6. Cross Talk among Transporters of the Phosphoenolpyruvate-Dependent Phosphotransferase System in Bacillus subtilis. Morabbi Heravi K; Altenbuchner J J Bacteriol; 2018 Oct; 200(19):. PubMed ID: 30038046 [TBL] [Abstract][Full Text] [Related]
7. Division-site localization of RodZ is required for efficient Z ring formation in Escherichia coli. Yoshii Y; Niki H; Shiomi D Mol Microbiol; 2019 May; 111(5):1229-1244. PubMed ID: 30742332 [TBL] [Abstract][Full Text] [Related]
8. Direct interaction of FtsZ and MreB is required for septum synthesis and cell division in Escherichia coli. Fenton AK; Gerdes K EMBO J; 2013 Jul; 32(13):1953-65. PubMed ID: 23756461 [TBL] [Abstract][Full Text] [Related]
9. Sugar transport. Properties of mutant bacteria defective in proteins of the phosphoenolpyruvate: sugar phosphotransferase system. Simoni RD; Roseman S; Saier MH J Biol Chem; 1976 Nov; 251(21):6584-97. PubMed ID: 789368 [TBL] [Abstract][Full Text] [Related]
10. Molecular analysis of the glucose-specific phosphoenolpyruvate : sugar phosphotransferase system from Lactobacillus casei and its links with the control of sugar metabolism. Yebra MJ; Monedero V; Zúñiga M; Deutscher J; Pérez-Martínez G Microbiology (Reading); 2006 Jan; 152(Pt 1):95-104. PubMed ID: 16385119 [TBL] [Abstract][Full Text] [Related]
11. Phosphotransferase system sugars immediately induce mutations of Cra in an Escherichia coli ptsH mutant. Min H; Seok YJ Environ Microbiol; 2022 Nov; 24(11):5425-5436. PubMed ID: 36251433 [TBL] [Abstract][Full Text] [Related]
12. Two independent spiral structures control cell shape in Caulobacter. Dye NA; Pincus Z; Theriot JA; Shapiro L; Gitai Z Proc Natl Acad Sci U S A; 2005 Dec; 102(51):18608-13. PubMed ID: 16344481 [TBL] [Abstract][Full Text] [Related]
14. Critical Role for the Extended N Terminus of Chlamydial MreB in Directing Its Membrane Association and Potential Interaction with Divisome Proteins. Lee J; Cox JV; Ouellette SP J Bacteriol; 2020 Apr; 202(9):. PubMed ID: 32041796 [TBL] [Abstract][Full Text] [Related]
15. Mechanistic insights into the regulation of cell wall hydrolysis by FtsEX and EnvC at the bacterial division site. Xu X; Li J; Chua WZ; Pages MA; Shi J; Hermoso JA; Bernhardt T; Sham LT; Luo M Proc Natl Acad Sci U S A; 2023 May; 120(21):e2301897120. PubMed ID: 37186861 [TBL] [Abstract][Full Text] [Related]
16. Identification and application of a different glucose uptake system that functions as an alternative to the phosphotransferase system in Corynebacterium glutamicum. Ikeda M; Mizuno Y; Awane S; Hayashi M; Mitsuhashi S; Takeno S Appl Microbiol Biotechnol; 2011 May; 90(4):1443-51. PubMed ID: 21452034 [TBL] [Abstract][Full Text] [Related]
17. Physiological consequences of the complete loss of phosphoryl-transfer proteins HPr and FPr of the phosphoenolpyruvate:sugar phosphotransferase system and analysis of fructose (fru) operon expression in Salmonella typhimurium. Feldheim DA; Chin AM; Nierva CT; Feucht BU; Cao YW; Xu YF; Sutrina SL; Saier MH J Bacteriol; 1990 Sep; 172(9):5459-69. PubMed ID: 2203752 [TBL] [Abstract][Full Text] [Related]
18. CbtA toxin of Escherichia coli inhibits cell division and cell elongation via direct and independent interactions with FtsZ and MreB. Heller DM; Tavag M; Hochschild A PLoS Genet; 2017 Sep; 13(9):e1007007. PubMed ID: 28931012 [TBL] [Abstract][Full Text] [Related]
19. Functional analysis of the cytoskeleton protein MreB from Chlamydophila pneumoniae. Gaballah A; Kloeckner A; Otten C; Sahl HG; Henrichfreise B PLoS One; 2011; 6(10):e25129. PubMed ID: 22022378 [TBL] [Abstract][Full Text] [Related]
20. Glucose transport by a mutant of Streptococcus mutans unable to accumulate sugars via the phosphoenolpyruvate phosphotransferase system. Cvitkovitch DG; Boyd DA; Thevenot T; Hamilton IR J Bacteriol; 1995 May; 177(9):2251-8. PubMed ID: 7730250 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]