BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 36199268)

  • 1. CRISPR-Cas system manipulating nanoparticles signal transduction for cancer diagnosis.
    Guo Y; Guo L; Su Y; Xiong Y
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2023 Mar; 15(2):e1851. PubMed ID: 36199268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gold Nanomaterials-Implemented CRISPR-Cas Systems for Biosensing.
    Fu R; Xianyu Y
    Small; 2023 May; 19(21):e2300057. PubMed ID: 36840654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas Advancement in Molecular Diagnostics and Signal Readout Approaches.
    Ahmed MZ; Badani P; Reddy R; Mishra G
    J Mol Diagn; 2021 Nov; 23(11):1433-1442. PubMed ID: 34454111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Signal amplification and output of CRISPR/Cas-based biosensing systems: A review.
    Wang SY; Du YC; Wang DX; Ma JY; Tang AN; Kong DM
    Anal Chim Acta; 2021 Nov; 1185():338882. PubMed ID: 34711321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrating CRISPR/Cas within isothermal amplification for point-of-Care Assay of nucleic acid.
    Zhang L; Jiang H; Zhu Z; Liu J; Li B
    Talanta; 2022 Jun; 243():123388. PubMed ID: 35303554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR/Cas-Based In Vitro Diagnostic Platforms for Cancer Biomarker Detection.
    Gong S; Zhang S; Lu F; Pan W; Li N; Tang B
    Anal Chem; 2021 Sep; 93(35):11899-11909. PubMed ID: 34427091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The design strategies for CRISPR-based biosensing: Target recognition, signal conversion, and signal amplification.
    Yin Y; Wen J; Wen M; Fu X; Ke G; Zhang XB
    Biosens Bioelectron; 2024 Feb; 246():115839. PubMed ID: 38042054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Point-of-care CRISPR/Cas nucleic acid detection: Recent advances, challenges and opportunities.
    van Dongen JE; Berendsen JTW; Steenbergen RDM; Wolthuis RMF; Eijkel JCT; Segerink LI
    Biosens Bioelectron; 2020 Oct; 166():112445. PubMed ID: 32758911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Challenges and Opportunities for Clustered Regularly Interspaced Short Palindromic Repeats Based Molecular Biosensing.
    Bao M; Chen Q; Xu Z; Jensen EC; Liu C; Waitkus JT; Yuan X; He Q; Qin P; Du K
    ACS Sens; 2021 Jul; 6(7):2497-2522. PubMed ID: 34143608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in biosensing: The CRISPR/Cas system as a new powerful tool for the detection of nucleic acids.
    Bonini A; Poma N; Vivaldi F; Kirchhain A; Salvo P; Bottai D; Tavanti A; Di Francesco F
    J Pharm Biomed Anal; 2021 Jan; 192():113645. PubMed ID: 33039910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The CRISPR/Cas System: A Customizable Toolbox for Molecular Detection.
    He Y; Yan W; Long L; Dong L; Ma Y; Li C; Xie Y; Liu N; Xing Z; Xia W; Li F
    Genes (Basel); 2023 Mar; 14(4):. PubMed ID: 37107608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanozyme-assisted amplification-free CRISPR/Cas system realizes visual detection.
    Zhang Y; Yu W; Wang M; Zhang L; Li P
    Front Bioeng Biotechnol; 2023; 11():1327498. PubMed ID: 38249803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR/Cas12a-based dual amplified biosensing system for sensitive and rapid detection of polynucleotide kinase/phosphatase.
    Wang DX; Wang J; Du YC; Ma JY; Wang SY; Tang AN; Kong DM
    Biosens Bioelectron; 2020 Nov; 168():112556. PubMed ID: 32890931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Application of CRISPR/Cas systems in the nucleic acid detection of pathogens: a review].
    Li M; Qin Z; Yin K; Zheng B
    Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi; 2023 Feb; 35(1):98-103. PubMed ID: 36974023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Application of CRISPR/Cas-based biosensors for detecting nucleic acid of pathogens].
    Liu T; Tian Y; Liu C; Fang S; Wu Y; Wu M; Li B; Yang H; Liu Q
    Sheng Wu Gong Cheng Xue Bao; 2021 Nov; 37(11):3890-3904. PubMed ID: 34841793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Update of Nucleic Acids Aptamers Theranostic Integration with CRISPR/Cas Technology.
    Roueinfar M; Templeton HN; Sheng JA; Hong KL
    Molecules; 2022 Feb; 27(3):. PubMed ID: 35164379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR-Cas-Integrated LAMP.
    Atçeken N; Yigci D; Ozdalgic B; Tasoglu S
    Biosensors (Basel); 2022 Nov; 12(11):. PubMed ID: 36421156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR/Cas-powered nanobiosensors for diagnostics.
    Phan QA; Truong LB; Medina-Cruz D; Dincer C; Mostafavi E
    Biosens Bioelectron; 2022 Feb; 197():113732. PubMed ID: 34741959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR/Cas-engineered technology: Innovative approach for biosensor development.
    Zavvar TS; Khoshbin Z; Ramezani M; Alibolandi M; Abnous K; Taghdisi SM
    Biosens Bioelectron; 2022 Oct; 214():114501. PubMed ID: 35777218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic insights of CRISPR/Cas nucleases for programmable targeting and early-stage diagnosis: A review.
    Habimana JD; Huang R; Muhoza B; Kalisa YN; Han X; Deng W; Li Z
    Biosens Bioelectron; 2022 May; 203():114033. PubMed ID: 35131696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.