These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 36199313)

  • 1. Improvement of mechanical and antibacterial properties of porous nHA scaffolds by fluorinated graphene oxide.
    Xu Z; Li Y; Xu D; Li L; Xu Y; Chen L; Liu Y; Sun J
    RSC Adv; 2022 Sep; 12(39):25405-25414. PubMed ID: 36199313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of antibacterial degummed silk fiber/nano-hydroxyapatite/polylactic acid composite scaffold by degummed silk fiber loaded silver nanoparticles.
    Li G; Qin S; Zhang D; Liu X
    Nanotechnology; 2019 Jul; 30(29):295101. PubMed ID: 30917342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-Step Preparation of an AgNP-nHA@RGO Three-Dimensional Porous Scaffold and Its Application in Infected Bone Defect Treatment.
    Weng W; Li X; Nie W; Liu H; Liu S; Huang J; Zhou Q; He J; Su J; Dong Z; Wang D
    Int J Nanomedicine; 2020; 15():5027-5042. PubMed ID: 32764934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement of the mechanical properties and osteogenic activity of 3D-printed polylactic acid porous scaffolds by nano-hydroxyapatite and nano-magnesium oxide.
    Xu D; Xu Z; Cheng L; Gao X; Sun J; Chen L
    Heliyon; 2022 Jun; 8(6):e09748. PubMed ID: 35761932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication, characterization, and optimization of a novel copper-incorporated chitosan/gelatin-based scaffold for bone tissue engineering applications.
    Bozorgi A; Mozafari M; Khazaei M; Soleimani M; Jamalpoor Z
    Bioimpacts; 2022; 12(3):233-246. PubMed ID: 35677664
    [No Abstract]   [Full Text] [Related]  

  • 6. Enhanced In Vitro Biocompatible Polycaprolactone/Nano-Hydroxyapatite Scaffolds with Near-Field Direct-Writing Melt Electrospinning Technology.
    Chen Z; Liu Y; Huang J; Wang H; Hao M; Hu X; Qian X; Fan J; Yang H; Yang B
    J Funct Biomater; 2022 Sep; 13(4):. PubMed ID: 36278630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [CYTOCOMPATIBILITY AND PREPARATION OF BONE TISSUE ENGINEERING SCAFFOLD BY COMBINING LOW TEMPERATURE THREE DIMENSIONAL PRINTING AND VACUUM FREEZE-DRYING TECHNIQUES].
    Li D; Zhang Z; Zheng C; Zhao B; Sun K; Nian Z; Zhang X; Li R; Li H
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Mar; 30(3):292-7. PubMed ID: 27281872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nano-hydroxy apatite/chitosan/gelatin scaffolds enriched by a combination of platelet-rich plasma and fibrin glue enhance proliferation and differentiation of seeded human dental pulp stem cells.
    Sadeghinia A; Davaran S; Salehi R; Jamalpoor Z
    Biomed Pharmacother; 2019 Jan; 109():1924-1931. PubMed ID: 30551447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of chitosan/silk fibroin/hydroxyapatite porous scaffold and its characteristics in comparison to bi-component scaffolds.
    Qi XN; Mou ZL; Zhang J; Zhang ZQ
    J Biomed Mater Res A; 2014 Feb; 102(2):366-72. PubMed ID: 23533149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication and in vitro biocompatibility of biomorphic PLGA/nHA composite scaffolds for bone tissue engineering.
    Qian J; Xu W; Yong X; Jin X; Zhang W
    Mater Sci Eng C Mater Biol Appl; 2014 Mar; 36():95-101. PubMed ID: 24433891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioactivity and Bone Cell Formation with Poly-ε-Caprolactone/Bioceramic 3D Porous Scaffolds.
    Juan PK; Fan FY; Lin WC; Liao PB; Huang CF; Shen YK; Ruslin M; Lee CH
    Polymers (Basel); 2021 Aug; 13(16):. PubMed ID: 34451257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D printed porous PLA/nHA composite scaffolds with enhanced osteogenesis and osteoconductivity in vivo for bone regeneration.
    Chen X; Gao C; Jiang J; Wu Y; Zhu P; Chen G
    Biomed Mater; 2019 Sep; 14(6):065003. PubMed ID: 31382255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and properties of poly(lactide-co-glycolide) (PLGA)/ nano-hydroxyapatite (NHA) scaffolds by thermally induced phase separation and rabbit MSCs culture on scaffolds.
    Huang YX; Ren J; Chen C; Ren TB; Zhou XY
    J Biomater Appl; 2008 Mar; 22(5):409-32. PubMed ID: 17494961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance of 3D printed porous polyetheretherketone composite scaffolds combined with nano-hydroxyapatite/carbon fiber in bone tissue engineering: a biological evaluation.
    Mi L; Li F; Xu D; Liu J; Li J; Zhong L; Liu Y; Bai N
    Front Bioeng Biotechnol; 2024; 12():1343294. PubMed ID: 38333080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Dioxane and N-Methyl-2-pyrrolidone as a Solvent on Biocompatibility and Degradation Performance of PLGA/nHA Scaffolds.
    Aboudzadeh N; Khavandi A; Javadpour J; Shokrgozar MA; Imani M
    Iran Biomed J; 2021 Nov; 25(6):408-16. PubMed ID: 34641642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the effects of nano-TiO2 on bioactivity and mechanical properties of nano bioglass-P3HB composite scaffold for bone tissue engineering.
    Bakhtiyari SS; Karbasi S; Monshi A; Montazeri M
    J Mater Sci Mater Med; 2016 Jan; 27(1):2. PubMed ID: 26610925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graphene oxide encapsulated forsterite scaffolds to improve mechanical properties and antibacterial behavior.
    Najafinezhad A; Bakhsheshi-Rad HR; Saberi A; Nourbakhsh AA; Daroonparvar M; Ismail AF; Sharif S; RamaKrishna S; Dai Y; Berto F
    Biomed Mater; 2022 Apr; 17(3):. PubMed ID: 35358956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Situ Grown Nanohydroxyapatite Hybridized Graphene Oxide: Enhancing the Strength and Bioactivity of Polymer Scaffolds.
    Li D; Chen M; Guo W; Li P; Wang H; Ding W; Li M; Xu Y
    ACS Omega; 2022 Apr; 7(14):12242-12254. PubMed ID: 35449948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the Morphological Effects of Hydroxyapatite Nanoparticles on the Rheological Properties and Printability of Hydroxyapatite/Polycaprolactone Nanocomposite Inks and Final Scaffold Features.
    Kazemi M; Mirzadeh M; Esmaeili H; Kazemi E; Rafienia M; Poursamar SA
    3D Print Addit Manuf; 2024 Feb; 11(1):132-142. PubMed ID: 38389680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel Electrospun Polylactic Acid Nanocomposite Fiber Mats with Hybrid Graphene Oxide and Nanohydroxyapatite Reinforcements Having Enhanced Biocompatibility.
    Liu C; Wong HM; Yeung KWK; Tjong SC
    Polymers (Basel); 2016 Aug; 8(8):. PubMed ID: 30974562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.