These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 36199555)

  • 1. Stability of scRNA-Seq Analysis Workflows is Susceptible to Preprocessing and is Mitigated by Regularized or Supervised Approaches.
    Durmaz A; Scott JG
    Evol Bioinform Online; 2022; 18():11769343221123050. PubMed ID: 36199555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A robust and accurate single-cell data trajectory inference method using ensemble pseudotime.
    Zhang Y; Tran D; Nguyen T; Dascalu SM; Harris FC
    BMC Bioinformatics; 2023 Feb; 24(1):55. PubMed ID: 36803767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison and evaluation of statistical error models for scRNA-seq.
    Choudhary S; Satija R
    Genome Biol; 2022 Jan; 23(1):27. PubMed ID: 35042561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. scNPF: an integrative framework assisted by network propagation and network fusion for preprocessing of single-cell RNA-seq data.
    Ye W; Ji G; Ye P; Long Y; Xiao X; Li S; Su Y; Wu X
    BMC Genomics; 2019 May; 20(1):347. PubMed ID: 31068142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SSNMDI: a novel joint learning model of semi-supervised non-negative matrix factorization and data imputation for clustering of single-cell RNA-seq data.
    Qiu Y; Yan C; Zhao P; Zou Q
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37122068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ScLRTC: imputation for single-cell RNA-seq data via low-rank tensor completion.
    Pan X; Li Z; Qin S; Yu M; Hu H
    BMC Genomics; 2021 Nov; 22(1):860. PubMed ID: 34844559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Joint learning dimension reduction and clustering of single-cell RNA-sequencing data.
    Wu W; Ma X
    Bioinformatics; 2020 Jun; 36(12):3825-3832. PubMed ID: 32246821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dictionary learning allows model-free pseudotime estimation of transcriptomic data.
    Rams M; Conrad TOF
    BMC Genomics; 2022 Jan; 23(1):56. PubMed ID: 35033004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning and statistical methods for clustering single-cell RNA-sequencing data.
    Petegrosso R; Li Z; Kuang R
    Brief Bioinform; 2020 Jul; 21(4):1209-1223. PubMed ID: 31243426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating the performance of dropout imputation and clustering methods for single-cell RNA sequencing data.
    Xu J; Cui L; Zhuang J; Meng Y; Bing P; He B; Tian G; Kwok Pui C; Wu T; Wang B; Yang J
    Comput Biol Med; 2022 Jul; 146():105697. PubMed ID: 35697529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parameter tuning is a key part of dimensionality reduction via deep variational autoencoders for single cell RNA transcriptomics.
    Hu Q; Greene CS
    Pac Symp Biocomput; 2019; 24():362-373. PubMed ID: 30963075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-cell RNA sequencing data analysis based on non-uniform ε-neighborhood network.
    Jia J; Chen L
    Bioinformatics; 2022 Apr; 38(9):2459-2465. PubMed ID: 35188181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Comparison for Dimensionality Reduction Methods of Single-Cell RNA-seq Data.
    Xiang R; Wang W; Yang L; Wang S; Xu C; Chen X
    Front Genet; 2021; 12():646936. PubMed ID: 33833778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of scRNA-seq data analysis method combinations.
    Xu L; Xue T; Ding W; Shen L
    Brief Funct Genomics; 2022 Nov; 21(6):433-440. PubMed ID: 36124658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Data-driven selection of analysis decisions in single-cell RNA-seq trajectory inference.
    Dong X; Leary JR; Yang C; Brusko MA; Brusko TM; Bacher R
    bioRxiv; 2023 Dec; ():. PubMed ID: 38187768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One Cell At a Time (OCAT): a unified framework to integrate and analyze single-cell RNA-seq data.
    Wang CX; Zhang L; Wang B
    Genome Biol; 2022 Apr; 23(1):102. PubMed ID: 35443717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. scLINE: A multi-network integration framework based on network embedding for representation of single-cell RNA-seq data.
    Li H; Xiao X; Wu X; Ye L; Ji G
    J Biomed Inform; 2021 Oct; 122():103899. PubMed ID: 34481921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visualizing Single-Cell RNA-seq Data with Semisupervised Principal Component Analysis.
    Liu Z
    Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32806757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-Cell RNA Sequencing Analysis: A Step-by-Step Overview.
    Slovin S; Carissimo A; Panariello F; Grimaldi A; Bouché V; Gambardella G; Cacchiarelli D
    Methods Mol Biol; 2021; 2284():343-365. PubMed ID: 33835452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.