BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 36199762)

  • 1. Energy-Efficient Respiratory Anomaly Detection in Premature Newborn Infants.
    Paul A; Tajin MAS; Das A; Mongan WM; Dandekar KR
    Electronics (Basel); 2022 Mar; 11(5):. PubMed ID: 36199762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Scatter-and-Gather Spiking Convolutional Neural Network on a Reconfigurable Neuromorphic Hardware.
    Zou C; Cui X; Kuang Y; Liu K; Wang Y; Wang X; Huang R
    Front Neurosci; 2021; 15():694170. PubMed ID: 34867142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Training much deeper spiking neural networks with a small number of time-steps.
    Meng Q; Yan S; Xiao M; Wang Y; Lin Z; Luo ZQ
    Neural Netw; 2022 Sep; 153():254-268. PubMed ID: 35759953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural Coding in Spiking Neural Networks: A Comparative Study for Robust Neuromorphic Systems.
    Guo W; Fouda ME; Eltawil AM; Salama KN
    Front Neurosci; 2021; 15():638474. PubMed ID: 33746705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Neuromorphic Processing System With Spike-Driven SNN Processor for Wearable ECG Classification.
    Chu H; Yan Y; Gan L; Jia H; Qian L; Huan Y; Zheng L; Zou Z
    IEEE Trans Biomed Circuits Syst; 2022 Aug; 16(4):511-523. PubMed ID: 35802543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trainable quantization for Speedy Spiking Neural Networks.
    Castagnetti A; Pegatoquet A; Miramond B
    Front Neurosci; 2023; 17():1154241. PubMed ID: 36937675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SSTDP: Supervised Spike Timing Dependent Plasticity for Efficient Spiking Neural Network Training.
    Liu F; Zhao W; Chen Y; Wang Z; Yang T; Jiang L
    Front Neurosci; 2021; 15():756876. PubMed ID: 34803591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 0.99-to-4.38 uJ/class Event-Driven Hybrid Neural Network Processor for Full-Spectrum Neural Signal Analyses.
    Zhao S; Yang J; Wang J; Fang C; Liu T; Zhang S; Sawan M
    IEEE Trans Biomed Circuits Syst; 2023 Jun; 17(3):598-609. PubMed ID: 37074883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast-SNN: Fast Spiking Neural Network by Converting Quantized ANN.
    Hu Y; Zheng Q; Jiang X; Pan G
    IEEE Trans Pattern Anal Mach Intell; 2023 Dec; 45(12):14546-14562. PubMed ID: 37721891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ACE-SNN: Algorithm-Hardware Co-design of Energy-Efficient & Low-Latency Deep Spiking Neural Networks for 3D Image Recognition.
    Datta G; Kundu S; Jaiswal AR; Beerel PA
    Front Neurosci; 2022; 16():815258. PubMed ID: 35464314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A lightweight convolutional neural network hardware implementation for wearable heart rate anomaly detection.
    Gu M; Zhang Y; Wen Y; Ai G; Zhang H; Wang P; Wang G
    Comput Biol Med; 2023 Mar; 155():106623. PubMed ID: 36809696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Little Energy Goes a Long Way: Build an Energy-Efficient, Accurate Spiking Neural Network From Convolutional Neural Network.
    Wu D; Yi X; Huang X
    Front Neurosci; 2022; 16():759900. PubMed ID: 35692427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ReStoCNet: Residual Stochastic Binary Convolutional Spiking Neural Network for Memory-Efficient Neuromorphic Computing.
    Srinivasan G; Roy K
    Front Neurosci; 2019; 13():189. PubMed ID: 30941003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On-Chip Training Spiking Neural Networks Using Approximated Backpropagation With Analog Synaptic Devices.
    Kwon D; Lim S; Bae JH; Lee ST; Kim H; Seo YT; Oh S; Kim J; Yeom K; Park BG; Lee JH
    Front Neurosci; 2020; 14():423. PubMed ID: 32733180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ALBSNN: ultra-low latency adaptive local binary spiking neural network with accuracy loss estimator.
    Pei Y; Xu C; Wu Z; Liu Y; Yang Y
    Front Neurosci; 2023; 17():1225871. PubMed ID: 37771337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An FPGA Implementation of Deep Spiking Neural Networks for Low-Power and Fast Classification.
    Ju X; Fang B; Yan R; Xu X; Tang H
    Neural Comput; 2020 Jan; 32(1):182-204. PubMed ID: 31703174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SCTN: Event-based object tracking with energy-efficient deep convolutional spiking neural networks.
    Ji M; Wang Z; Yan R; Liu Q; Xu S; Tang H
    Front Neurosci; 2023; 17():1123698. PubMed ID: 36875665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DT-SCNN: dual-threshold spiking convolutional neural network with fewer operations and memory access for edge applications.
    Lei F; Yang X; Liu J; Dou R; Wu N
    Front Comput Neurosci; 2024; 18():1418115. PubMed ID: 38873286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EnforceSNN: Enabling resilient and energy-efficient spiking neural network inference considering approximate DRAMs for embedded systems.
    Putra RVW; Hanif MA; Shafique M
    Front Neurosci; 2022; 16():937782. PubMed ID: 36033624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supervised Learning in All FeFET-Based Spiking Neural Network: Opportunities and Challenges.
    Dutta S; Schafer C; Gomez J; Ni K; Joshi S; Datta S
    Front Neurosci; 2020; 14():634. PubMed ID: 32670012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.