These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 36199778)

  • 1. Survival Prediction of Children Undergoing Hematopoietic Stem Cell Transplantation Using Different Machine Learning Classifiers by Performing Chi-Square Test and Hyperparameter Optimization: A Retrospective Analysis.
    Ratul IJ; Wani UH; Nishat MM; Al-Monsur A; Ar-Rafi AM; Faisal F; Kabir MR
    Comput Math Methods Med; 2022; 2022():9391136. PubMed ID: 36199778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diabetes mellitus prediction and diagnosis from a data preprocessing and machine learning perspective.
    Olisah CC; Smith L; Smith M
    Comput Methods Programs Biomed; 2022 Jun; 220():106773. PubMed ID: 35429810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MABAL: a Novel Deep-Learning Architecture for Machine-Assisted Bone Age Labeling.
    Mutasa S; Chang PD; Ruzal-Shapiro C; Ayyala R
    J Digit Imaging; 2018 Aug; 31(4):513-519. PubMed ID: 29404850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Score and Correlation Coefficient-Based Feature Selection for Predicting Heart Failure Diagnosis by Using Machine Learning Algorithms.
    Senan EM; Abunadi I; Jadhav ME; Fati SM
    Comput Math Methods Med; 2021; 2021():8500314. PubMed ID: 34966445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feature Selection is Critical for 2-Year Prognosis in Advanced Stage High Grade Serous Ovarian Cancer by Using Machine Learning.
    Laios A; Katsenou A; Tan YS; Johnson R; Otify M; Kaufmann A; Munot S; Thangavelu A; Hutson R; Broadhead T; Theophilou G; Nugent D; De Jong D
    Cancer Control; 2021; 28():10732748211044678. PubMed ID: 34693730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of information theoretic feature selection and machine learning methods for the development of genetic risk prediction models.
    Jalali-Najafabadi F; Stadler M; Dand N; Jadon D; Soomro M; Ho P; Marzo-Ortega H; Helliwell P; Korendowych E; Simpson MA; Packham J; Smith CH; Barker JN; McHugh N; Warren RB; Barton A; Bowes J; ;
    Sci Rep; 2021 Dec; 11(1):23335. PubMed ID: 34857774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of Machine Learning to Child Mode Choice with a Novel Technique to Optimize Hyperparameters.
    Naseri H; Waygood EOD; Wang B; Patterson Z
    Int J Environ Res Public Health; 2022 Dec; 19(24):. PubMed ID: 36554720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supervised Machine Learning Algorithms for Bioelectromagnetics: Prediction Models and Feature Selection Techniques Using Data from Weak Radiofrequency Radiation Effect on Human and Animals Cells.
    Halgamuge MN
    Int J Environ Res Public Health; 2020 Jun; 17(12):. PubMed ID: 32604814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning-based classification of the movements of children with profound or severe intellectual or multiple disabilities using environment data features.
    Herbuela VRDM; Karita T; Furukawa Y; Wada Y; Toya A; Senba S; Onishi E; Saeki T
    PLoS One; 2022; 17(6):e0269472. PubMed ID: 35771797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-Label Active Learning-Based Machine Learning Model for Heart Disease Prediction.
    El-Hasnony IM; Elzeki OM; Alshehri A; Salem H
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining handcrafted features with latent variables in machine learning for prediction of radiation-induced lung damage.
    Cui S; Luo Y; Tseng HH; Ten Haken RK; El Naqa I
    Med Phys; 2019 May; 46(5):2497-2511. PubMed ID: 30891794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating the performance of machine learning methods and variable selection methods for predicting difficult-to-measure traits in Holstein dairy cattle using milk infrared spectral data.
    Mota LFM; Pegolo S; Baba T; Peñagaricano F; Morota G; Bittante G; Cecchinato A
    J Dairy Sci; 2021 Jul; 104(7):8107-8121. PubMed ID: 33865589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of Allogeneic Hematopoietic Stem-Cell Transplantation Mortality 100 Days After Transplantation Using a Machine Learning Algorithm: A European Group for Blood and Marrow Transplantation Acute Leukemia Working Party Retrospective Data Mining Study.
    Shouval R; Labopin M; Bondi O; Mishan-Shamay H; Shimoni A; Ciceri F; Esteve J; Giebel S; Gorin NC; Schmid C; Polge E; Aljurf M; Kroger N; Craddock C; Bacigalupo A; Cornelissen JJ; Baron F; Unger R; Nagler A; Mohty M
    J Clin Oncol; 2015 Oct; 33(28):3144-51. PubMed ID: 26240227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated Evolutionary Learning: An Artificial Intelligence Approach to Joint Learning of Features and Hyperparameters for Optimized, Explainable Machine Learning.
    de Lacy N; Ramshaw MJ; Kutz JN
    Front Artif Intell; 2022; 5():832530. PubMed ID: 35493616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting the Availability of Hematopoietic Stem Cell Donors Using Machine Learning.
    Li Y; Masiliune A; Winstone D; Gasieniec L; Wong P; Lin H; Pawson R; Parkes G; Hadley A
    Biol Blood Marrow Transplant; 2020 Aug; 26(8):1406-1413. PubMed ID: 32413415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disease prediction via Bayesian hyperparameter optimization and ensemble learning.
    Gao L; Ding Y
    BMC Res Notes; 2020 Apr; 13(1):205. PubMed ID: 32276658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning-based risk factor analysis and prevalence prediction of intestinal parasitic infections using epidemiological survey data.
    Zafar A; Attia Z; Tesfaye M; Walelign S; Wordofa M; Abera D; Desta K; Tsegaye A; Ay A; Taye B
    PLoS Negl Trop Dis; 2022 Jun; 16(6):e0010517. PubMed ID: 35700192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A machine-learning-based algorithm improves prediction of preeclampsia-associated adverse outcomes.
    Schmidt LJ; Rieger O; Neznansky M; Hackelöer M; Dröge LA; Henrich W; Higgins D; Verlohren S
    Am J Obstet Gynecol; 2022 Jul; 227(1):77.e1-77.e30. PubMed ID: 35114187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting Health Material Accessibility: Development of Machine Learning Algorithms.
    Ji M; Liu Y; Hao T
    JMIR Med Inform; 2021 Sep; 9(9):e29175. PubMed ID: 34468321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing machine learning algorithms to predict 5-year survival in patients with chronic myeloid leukemia.
    Shanbehzadeh M; Afrash MR; Mirani N; Kazemi-Arpanahi H
    BMC Med Inform Decis Mak; 2022 Sep; 22(1):236. PubMed ID: 36068539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.