BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 36200707)

  • 1. Reversible Regulation of the Reactive Oxygen Species Level Using a Semiconductor Heterojunction.
    Wang X; Mu Y; Yang K; Shao K; Cong X; Cao Z; Sun X; Su C; Chen X; Feng C
    ACS Appl Mater Interfaces; 2022 Oct; 14(41):46324-46339. PubMed ID: 36200707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced photoconversion performance of NdVO
    Chang M; Wang M; Shu M; Zhao Y; Ding B; Huang S; Hou Z; Han G; Lin J
    Acta Biomater; 2019 Nov; 99():295-306. PubMed ID: 31437636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multifunctional nanozyme-reinforced copper-coordination polymer nanoparticles for drug-resistance bacteria extinction and diabetic wound healing.
    Zhao J; Xu T; Sun J; Yuan H; Hou M; Li Z; Wang J; Liang Z
    Biomater Res; 2023 Sep; 27(1):88. PubMed ID: 37723499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of NIR-responsive, ROS-generating and antibacterial black phosphorus quantum dots for promoting the MRSA-infected wound healing in diabetic rats.
    Huang S; Xu S; Hu Y; Zhao X; Chang L; Chen Z; Mei X
    Acta Biomater; 2022 Jan; 137():199-217. PubMed ID: 34644613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Full Solar-Spectrum-Driven Antibacterial Therapy over Hierarchical Sn
    Yang R; Song G; Wang L; Yang Z; Zhang J; Zhang X; Wang S; Ding L; Ren N; Wang A; Yu X
    Small; 2021 Oct; 17(39):e2102744. PubMed ID: 34418277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduction of Reactive Oxygen Species Accumulation Using Gadolinium-Doped Ceria for the Alleviation of Atherosclerosis.
    Gao Y; Liu S; Zeng X; Guo Z; Chen D; Li S; Tian Z; Qu Y
    ACS Appl Mater Interfaces; 2023 Mar; 15(8):10414-10425. PubMed ID: 36802486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatiotemporal Catalytic Nanozymes Microneedle Patches with Opposite Properties for Wound Management.
    Shan J; Zhang X; Wang L; Zhao Y
    Small; 2023 Sep; 19(36):e2302347. PubMed ID: 37127862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CD44-specific nanoparticles for redox-triggered reactive oxygen species production and doxorubicin release.
    Lin CW; Lu KY; Wang SY; Sung HW; Mi FL
    Acta Biomater; 2016 Apr; 35():280-92. PubMed ID: 26853764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into the Effect of Reactive Oxygen Species Regulation on Photocatalytic Performance via Construction of a Metal-Semiconductor Heterojunction.
    Shen J; Li ZJ; Hang ZF; Xu SF; Liu QQ; Tang H; Zhao XW
    J Nanosci Nanotechnol; 2020 Jun; 20(6):3478-3485. PubMed ID: 31748041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photocatalytic Reactive Oxygen Species Formation by Semiconductor-Metal Hybrid Nanoparticles. Toward Light-Induced Modulation of Biological Processes.
    Waiskopf N; Ben-Shahar Y; Galchenko M; Carmel I; Moshitzky G; Soreq H; Banin U
    Nano Lett; 2016 Jul; 16(7):4266-73. PubMed ID: 27224678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidant Generation Resulting from the Interaction of Copper with Menadione (Vitamin K3)-a Model for Metal-mediated Oxidant Generation in Living Systems.
    Xing G; Miller CJ; Ninh Pham A; Jones AM; Waite TD
    J Inorg Biochem; 2018 Nov; 188():38-49. PubMed ID: 30119016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile synthesis of heterostructured cerium oxide/yttrium oxide nanocomposite in UV light induced photocatalytic degradation and catalytic reduction: Synergistic effect of antimicrobial studies.
    Maria Magdalane C; Kaviyarasu K; Judith Vijaya J; Siddhardha B; Jeyaraj B
    J Photochem Photobiol B; 2017 Aug; 173():23-34. PubMed ID: 28554073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CeO
    Sendra M; Yeste PM; Moreno-Garrido I; Gatica JM; Blasco J
    Sci Total Environ; 2017 Jul; 590-591():304-315. PubMed ID: 28283294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separation of charge carriers and generation of reactive oxygen species by TiO
    Zhang H; Meng D; Fu B; Fan H; Cai R; Fu PP; Wu X
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2019; 37(2):81-98. PubMed ID: 31131702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-Homeostasis Immunoregulatory Strategy for Implant-Related Infections through Remodeling Redox Balance.
    Xu D; Zhu W; Ding C; Mei J; Zhou J; Cheng T; Guo G; Zhang X
    ACS Nano; 2023 Mar; 17(5):4574-4590. PubMed ID: 36811805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Near-infrared light triggered drug delivery system for higher efficacy of combined chemo-photothermal treatment.
    Chen Y; Li H; Deng Y; Sun H; Ke X; Ci T
    Acta Biomater; 2017 Mar; 51():374-392. PubMed ID: 28088668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polydopamine Nanoparticles as Efficient Scavengers for Reactive Oxygen Species in Periodontal Disease.
    Bao X; Zhao J; Sun J; Hu M; Yang X
    ACS Nano; 2018 Sep; 12(9):8882-8892. PubMed ID: 30028940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Near-Infrared Light-Controllable Multifunction Mesoporous Polydopamine Nanocomposites for Promoting Infected Wound Healing.
    Zeng WN; Wang D; Yu QP; Yu ZP; Wang HY; Wu CY; Du SW; Chen XY; Li JF; Zhou ZK; Zeng Y; Zhang Y
    ACS Appl Mater Interfaces; 2022 Jan; 14(2):2534-2550. PubMed ID: 34985258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioactivatable reactive oxygen species-sensitive nanoparticulate system for chemo-photodynamic therapy.
    Kim Y; Uthaman S; Pillarisetti S; Noh K; Huh KM; Park IK
    Acta Biomater; 2020 May; 108():273-284. PubMed ID: 32205212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive Nanoparticle-Mediated Modulation of Mitochondrial Homeostasis and Inflammation to Enhance Infected Bone Defect Healing.
    Chen X; He Q; Zhai Q; Tang H; Li D; Zhu X; Zheng X; Jian G; Cannon RD; Mei L; Wang S; Ji P; Song J; Chen T
    ACS Nano; 2023 Nov; 17(22):22960-22978. PubMed ID: 37930276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.