These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 36200766)
1. Role of Bifidobacterium pseudocatenulatum in Degradation and Consumption of Xylan-Derived Carbohydrates. Drey E; Kok CR; Hutkins R Appl Environ Microbiol; 2022 Oct; 88(20):e0129922. PubMed ID: 36200766 [TBL] [Abstract][Full Text] [Related]
2. Xylan alleviates dietary fiber deprivation-induced dysbiosis by selectively promoting Bifidobacterium pseudocatenulatum in pigs. Wang Z; Bai Y; Pi Y; Gerrits WJJ; de Vries S; Shang L; Tao S; Zhang S; Han D; Zhu Z; Wang J Microbiome; 2021 Nov; 9(1):227. PubMed ID: 34802456 [TBL] [Abstract][Full Text] [Related]
3. Multiple Transporters and Glycoside Hydrolases Are Involved in Arabinoxylan-Derived Oligosaccharide Utilization in Bifidobacterium pseudocatenulatum. Saito Y; Shigehisa A; Watanabe Y; Tsukuda N; Moriyama-Ohara K; Hara T; Matsumoto S; Tsuji H; Matsuki T Appl Environ Microbiol; 2020 Nov; 86(24):. PubMed ID: 33036985 [TBL] [Abstract][Full Text] [Related]
4. Xylooligosaccharides from hardwood and cereal xylans produced by a thermostable xylanase as carbon sources for Lactobacillus brevis and Bifidobacterium adolescentis. Falck P; Precha-Atsawanan S; Grey C; Immerzeel P; Stålbrand H; Adlercreutz P; Karlsson EN J Agric Food Chem; 2013 Jul; 61(30):7333-40. PubMed ID: 23822770 [TBL] [Abstract][Full Text] [Related]
5. Xylooligosaccharide Production with Low Xylose Release Using Crude Xylanase from Aureobasidium pullulans: Effect of the Enzymatic Hydrolysis Parameters. Gautério GV; Hübner T; Ribeiro TDR; Ziotti APM; Kalil SJ Appl Biochem Biotechnol; 2022 Feb; 194(2):862-881. PubMed ID: 34550500 [TBL] [Abstract][Full Text] [Related]
6. Production of xylooligosaccharides from corncob xylan by fungal xylanase and their utilization by probiotics. Chapla D; Pandit P; Shah A Bioresour Technol; 2012 Jul; 115():215-21. PubMed ID: 22100233 [TBL] [Abstract][Full Text] [Related]
7. Utilization of xylan-type polysaccharides in co-culture fermentations of Bifidobacterium and Bacteroides species. Zeybek N; Rastall RA; Buyukkileci AO Carbohydr Polym; 2020 May; 236():116076. PubMed ID: 32172889 [TBL] [Abstract][Full Text] [Related]
8. An integrated process to produce prebiotic xylooligosaccharides by autohydrolysis, nanofiltration and endo-xylanase from alkali-extracted xylan. Lian Z; Wang Y; Luo J; Lai C; Yong Q; Yu S Bioresour Technol; 2020 Oct; 314():123685. PubMed ID: 32593784 [TBL] [Abstract][Full Text] [Related]
9. A novel glycoside hydrolase 43-like enzyme from Salas-Veizaga DM; Rocabado-Villegas LR; Linares-Pastén JA; Gudmundsdottir EE; Hreggvidsson GO; Álvarez-Aliaga MT; Adlercreutz P; Nordberg Karlsson E Appl Environ Microbiol; 2024 Apr; 90(4):e0222323. PubMed ID: 38497645 [TBL] [Abstract][Full Text] [Related]
10. Prebiotic effect of xylooligosaccharides produced from birchwood xylan by a novel fungal GH11 xylanase. Nieto-Domínguez M; de Eugenio LI; York-Durán MJ; Rodríguez-Colinas B; Plou FJ; Chenoll E; Pardo E; Codoñer F; Jesús Martínez M Food Chem; 2017 Oct; 232():105-113. PubMed ID: 28490053 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of nutraceutical application of xylooligosaccharide enzymatically produced from cauliflower stalk for its value addition through a sustainable approach. Majumdar S; Bhattacharyya DK; Bhowal J Food Funct; 2021 Jun; 12(12):5501-5523. PubMed ID: 34002192 [TBL] [Abstract][Full Text] [Related]
12. Transformation of corncob into high-value xylooligosaccharides using glycoside hydrolase families 10 and 11 xylanases from Trichoderma asperellum ND-1. Zheng F; Chen J; Wang J; Zhuang H Bioresour Technol; 2024 Feb; 394():130249. PubMed ID: 38154735 [TBL] [Abstract][Full Text] [Related]
13. Determination of the modes of action and synergies of xylanases by analysis of xylooligosaccharide profiles over time using fluorescence-assisted carbohydrate electrophoresis. Gong W; Zhang H; Tian L; Liu S; Wu X; Li F; Wang L Electrophoresis; 2016 Jul; 37(12):1640-50. PubMed ID: 27060349 [TBL] [Abstract][Full Text] [Related]
14. Delineating thermophilic xylanase from Bacillus licheniformis DM5 towards its potential application in xylooligosaccharides production. Ghosh A; Sutradhar S; Baishya D World J Microbiol Biotechnol; 2019 Jan; 35(2):34. PubMed ID: 30706219 [TBL] [Abstract][Full Text] [Related]
15. Sugarcane bagasse derived xylooligosaccharides produced by an arabinofuranosidase/xylobiohydrolase from Bifidobacterium longum in synergism with xylanases. Capetti CCM; Ontañon O; Navas LE; Campos E; Simister R; Dowle A; Liberato MV; Pellegrini VOA; Gómez LD; Polikarpov I Carbohydr Polym; 2024 Sep; 339():122248. PubMed ID: 38823916 [TBL] [Abstract][Full Text] [Related]
16. The effect of an oligosaccharide reducing-end xylanase, BhRex8A, on the synergistic degradation of xylan backbones by an optimised xylanolytic enzyme cocktail. Malgas S; Pletschke BI Enzyme Microb Technol; 2019 Mar; 122():74-81. PubMed ID: 30638511 [TBL] [Abstract][Full Text] [Related]
17. Multimodularity of a GH10 Xylanase Found in the Termite Gut Metagenome. Wu H; Ioannou E; Henrissat B; Montanier CY; Bozonnet S; O'Donohue MJ; Dumon C Appl Environ Microbiol; 2021 Jan; 87(3):. PubMed ID: 33187992 [TBL] [Abstract][Full Text] [Related]
18. Xylan utilisation promotes adaptation of Bifidobacterium pseudocatenulatum to the human gastrointestinal tract. Watanabe Y; Saito Y; Hara T; Tsukuda N; Aiyama-Suzuki Y; Tanigawa-Yahagi K; Kurakawa T; Moriyama-Ohara K; Matsumoto S; Matsuki T ISME Commun; 2021 Oct; 1(1):62. PubMed ID: 37938239 [TBL] [Abstract][Full Text] [Related]
19. A typical endo-xylanase from Streptomyces rameus L2001 and its unique characteristics in xylooligosaccharide production. Li X; Li E; Zhu Y; Teng C; Sun B; Song H; Yang R Carbohydr Res; 2012 Oct; 359():30-6. PubMed ID: 22925761 [TBL] [Abstract][Full Text] [Related]