These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 3620129)

  • 1. Stapes vibration produced by the output transducer of an implantable hearing aid. Experimental study.
    Gyo K; Goode RL; Miller C
    Arch Otolaryngol Head Neck Surg; 1987 Oct; 113(10):1078-81. PubMed ID: 3620129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of static force on round window stimulation with the direct acoustic cochlea stimulator.
    Maier H; Salcher R; Schwab B; Lenarz T
    Hear Res; 2013 Jul; 301():115-24. PubMed ID: 23276731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite element analysis of the coupling between ossicular chain and mass loading for evaluation of implantable hearing device.
    Wang X; Hu Y; Wang Z; Shi H
    Hear Res; 2011 Oct; 280(1-2):48-57. PubMed ID: 21554941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo characterization of piezoelectric transducers for implantable hearing AIDS.
    Javel E; Grant IL; Kroll K
    Otol Neurotol; 2003 Sep; 24(5):784-95. PubMed ID: 14501457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of mass loading the ossicles with a floating mass transducer on middle ear transfer function.
    Needham AJ; Jiang D; Bibas A; Jeronimidis G; O'Connor AF
    Otol Neurotol; 2005 Mar; 26(2):218-24. PubMed ID: 15793408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implantable hearing aids: changes in the auditory-evoked potential of the monkey in response to increased loading of the stapes.
    Wilson EP; Deddens AE; Lesser TH; Fredrickson JM
    Am J Otolaryngol; 1990; 11(3):149-52. PubMed ID: 2382781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perception of sound through direct oscillation of the stapes using a piezoelectric ceramic bimorph.
    Yanagihara N; Gyo K; Suzuki K; Araki H
    Ann Otol Rhinol Laryngol; 1983; 92(3 Pt 1):223-7. PubMed ID: 6859740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fully implantable hearing aid in the incudostapedial joint gap.
    Koch M; Eßinger TM; Stoppe T; Lasurashvili N; Bornitz M; Zahnert T
    Hear Res; 2016 Oct; 340():169-178. PubMed ID: 27041338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of stapes vibration in Human temporal bones by round window stimulation using a 3-coil transducer.
    Shin DH; Kim DW; Lim HG; Jung ES; Seong KW; Lee JH; Kim MN; Cho JH
    Biomed Mater Eng; 2014; 24(1):405-11. PubMed ID: 24211922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of middle ear pressure change on middle ear mechanics.
    Murakami S; Gyo K; Goode RL
    Acta Otolaryngol; 1997 May; 117(3):390-5. PubMed ID: 9199525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stapes displacement and intracochlear pressure in response to very high level, low frequency sounds.
    Greene NT; Jenkins HA; Tollin DJ; Easter JR
    Hear Res; 2017 May; 348():16-30. PubMed ID: 28189837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reinforced active middle ear implant fixation in incus vibroplasty.
    Mlynski R; Dalhoff E; Heyd A; Wildenstein D; Hagen R; Gummer AW; Schraven SP
    Ear Hear; 2015 Jan; 36(1):72-81. PubMed ID: 25099400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of middle ear quasi-static stiffness on sound transmission quantified by a novel 3-axis optical force sensor.
    Dobrev I; Sim JH; Aqtashi B; Huber AM; Linder T; Röösli C
    Hear Res; 2018 Jan; 357():1-9. PubMed ID: 29149722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparative study of MED-EL FMT attachment to the long process of the incus in intact middle ears and its attachment to disarticulated stapes head.
    Chen T; Ren LJ; Yin DM; Li J; Yang L; Dai PD; Zhang TY
    Hear Res; 2017 Sep; 353():97-103. PubMed ID: 28666703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implementation of a direct install 3-pole type EM transducer in round window niche for implantable middle ear hearing aids.
    Shin DH; Lim HG; Jung ES; Wei Q; Seong KW; Lee JH; Lee SH; Cho JH
    Biomed Mater Eng; 2014; 24(6):2503-10. PubMed ID: 25226951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Techniques to improve the efficiency of a middle ear implant: effect of different methods of coupling to the ossicular chain.
    Devèze A; Koka K; Tringali S; Jenkins HA; Tollin DJ
    Otol Neurotol; 2013 Jan; 34(1):158-66. PubMed ID: 23196747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How does prosthesis head size affect vibration transmission in ossiculoplasty?
    Bance M; Campos A; Wong L; Morris DP; van Wijhe R
    Otolaryngol Head Neck Surg; 2007 Jul; 137(1):70-3. PubMed ID: 17599568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A self-adjusting ossicular prosthesis containing polyurethane sponge.
    Yamada H; Goode RL
    Otol Neurotol; 2010 Dec; 31(9):1404-8. PubMed ID: 21113980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical aspects in implantable microphones and hearing aids and development of a concept with a hydroacoustical transmission.
    Hüttenbrink KB; Zahnert TH; Bornitz M; Hofmann G
    Acta Otolaryngol; 2001 Jan; 121(2):185-9. PubMed ID: 11349775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implantable hearing aid using an ossicular vibrator composed of a piezoelectric ceramic bimorph: application to four patients.
    Yanagihara N; Yamanaka E; Gyo K
    Am J Otol; 1987 May; 8(3):213-9. PubMed ID: 3631222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.