BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 36201294)

  • 1. Alloy-Type Lithium Anode Prepared by Laser Microcladding and Dealloying for Improved Cycling/Rate Performance.
    Cao L; Zheng M; Wang J; Li S; Xu J; Xiao R; Huang T
    ACS Nano; 2022 Oct; 16(10):17220-17228. PubMed ID: 36201294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Assembled Framework Formed During Lithiation of SnS
    Yin K; Zhang M; Hood ZD; Pan J; Meng YS; Chi M
    Acc Chem Res; 2017 Jul; 50(7):1513-1520. PubMed ID: 28682057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversible nanopore formation in Ge nanowires during lithiation-delithiation cycling: an in situ transmission electron microscopy study.
    Liu XH; Huang S; Picraux ST; Li J; Zhu T; Huang JY
    Nano Lett; 2011 Sep; 11(9):3991-7. PubMed ID: 21859095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-temperature fusion fabrication of Li-Cu alloy anode with in situ formed 3D framework of inert LiCu
    Jia W; Liu Y; Wang Z; Qing F; Li J; Wang Y; Xiao R; Zhou A; Li G; Yu X; Hu YS; Li H; Wang Z; Huang X; Chen L
    Sci Bull (Beijing); 2020 Nov; 65(22):1907-1915. PubMed ID: 36738056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Porous Si/Cu Anode with High Initial Coulombic Efficiency and Volumetric Capacity by Comprehensive Utilization of Laser Additive Manufacturing-Chemical Dealloying.
    Cao L; Huang T; Zhang Q; Cui M; Xu J; Xiao R
    ACS Appl Mater Interfaces; 2020 Dec; 12(51):57071-57078. PubMed ID: 33259713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stress Mitigation of Nanosilicon Anode to Achieve Energy-Dense and Highly-Stable Full Cell.
    Cao L; Zheng M; Dong G; Xu J; Xiao R; Huang T
    Small; 2024 Jan; 20(3):e2305265. PubMed ID: 37699753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Fabrication of Porous Si with Interconnected Micro-Sized Dendrites and Tunable Morphology through the Dealloying of a Laser Remelted Al-Si Alloy.
    Huang T; Sun D; Yang W; Wu Q; Xiao R
    Materials (Basel); 2017 Mar; 10(4):. PubMed ID: 28772713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Si-Based High-Entropy Anode for Lithium-Ion Batteries.
    Lei X; Wang Y; Wang J; Su Y; Ji P; Liu X; Guo S; Wang X; Hu Q; Gu L; Zhang Y; Yang R; Zhou G; Su D
    Small Methods; 2024 Jan; 8(1):e2300754. PubMed ID: 37821416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nano-Architectured Composite Anode Enabling Long-Term Cycling Stability for High-Capacity Lithium-Ion Batteries.
    Kumar P; Berhaut CL; Zapata Dominguez D; De Vito E; Tardif S; Pouget S; Lyonnard S; Jouneau PH
    Small; 2020 Mar; 16(11):e1906812. PubMed ID: 32091177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Double conductivity-improved porous Sn/Sn
    Liu Q; Ye J; Chen Z; Hao Q; Xu C; Hou J
    J Colloid Interface Sci; 2019 Mar; 537():588-596. PubMed ID: 30471613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Electron/Ion Dual-Conductive Alloy Framework for High-Rate and High-Capacity Solid-State Lithium-Metal Batteries.
    Yang C; Xie H; Ping W; Fu K; Liu B; Rao J; Dai J; Wang C; Pastel G; Hu L
    Adv Mater; 2019 Jan; 31(3):e1804815. PubMed ID: 30462868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resolving the Origins of Superior Cycling Performance of Antimony Anode in Sodium-ion Batteries: A Comparison with Lithium-ion Batteries.
    Shao R; Sun Z; Wang L; Pan J; Yi L; Zhang Y; Han J; Yao Z; Li J; Wen Z; Chen S; Chou SL; Peng DL; Zhang Q
    Angew Chem Int Ed Engl; 2024 Mar; 63(11):e202320183. PubMed ID: 38265307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dealloying-Derived Nanoporous Cu
    Zhang C; Wang Z; Cui Y; Niu X; Chen M; Liang P; Liu J; Liu R; Li J; He X
    Materials (Basel); 2021 Aug; 14(15):. PubMed ID: 34361542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D Hierarchical Porous Cu-Based Composite Current Collector with Enhanced Ligaments for Notably Improved Cycle Stability of Sn Anode in Li-Ion Batteries.
    Luo Z; Xu J; Yuan B; Hu R; Yang L; Gao Y; Zhu M
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22050-22058. PubMed ID: 29882644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Situ Room-Temperature Cross-Linked Highly Branched Biopolymeric Binder Based on the Diels-Alder Reaction for High-Performance Silicon Anodes in Lithium-Ion Batteries.
    Cai Z; Hu S; Wei Y; Huang T; Yu A; Zhang H
    ACS Appl Mater Interfaces; 2021 Dec; 13(47):56095-56108. PubMed ID: 34727688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-Dimensional Double-Walled Ultrathin Graphite Tube Conductive Scaffold with Encapsulated Germanium Nanoparticles as a High-Areal-Capacity and Cycle-Stable Anode for Lithium-Ion Batteries.
    Mo R; Lei Z; Rooney D; Sun K
    ACS Nano; 2019 Jul; 13(7):7536-7544. PubMed ID: 31246005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanowire Heterostructures Comprising Germanium Stems and Silicon Branches as High-Capacity Li-Ion Anodes with Tunable Rate Capability.
    Kennedy T; Bezuidenhout M; Palaniappan K; Stokes K; Brandon M; Ryan KM
    ACS Nano; 2015 Jul; 9(7):7456-65. PubMed ID: 26125966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile fabrication of Fe(3)O(4) octahedra/nanoporous copper network composite for high-performance anode in Li-Ion batteries.
    Ye J; Wang Z; Hao Q; Liu B; Xu C
    J Colloid Interface Sci; 2017 May; 493():171-180. PubMed ID: 28092815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-step mild fabrication of porous core-shelled Si@TiO
    Ye J; Chen Z; Hao Q; Xu C; Hou J
    J Colloid Interface Sci; 2019 Feb; 536():171-179. PubMed ID: 30366182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature-Dependent Li Storage Performance in Nanoporous Cu-Ge-Al Alloy.
    Ma W; Wang Y; Yang Y; Wang X; Yuan Z; Liu X; Ding Y
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9073-9082. PubMed ID: 30741522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.