These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 36201412)

  • 21. Emotion Recognition Based on Electroencephalogram Using Semi-supervised Generative Adversarial Network.
    Yu SN; Liu YJ; Chang YP
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082803
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Cross-subject electroencephalogram emotion recognition based on maximum classifier discrepancy].
    Cai Z; Guo M; Yang X; Chen X; Xu G
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Jun; 38(3):455-462. PubMed ID: 34180190
    [TBL] [Abstract][Full Text] [Related]  

  • 23. SECT: A Method of Shifted EEG Channel Transformer for Emotion Recognition.
    Bai Z; Hou F; Sun K; Wu Q; Zhu M; Mao Z; Song Y; Gao Q
    IEEE J Biomed Health Inform; 2023 Oct; 27(10):4758-4767. PubMed ID: 37540609
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigating EEG-based functional connectivity patterns for multimodal emotion recognition.
    Wu X; Zheng WL; Li Z; Lu BL
    J Neural Eng; 2022 Jan; 19(1):. PubMed ID: 35094982
    [No Abstract]   [Full Text] [Related]  

  • 25. Cross-subject EEG emotion recognition combined with connectivity features and meta-transfer learning.
    Li J; Hua H; Xu Z; Shu L; Xu X; Kuang F; Wu S
    Comput Biol Med; 2022 Jun; 145():105519. PubMed ID: 35585734
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spatio-Temporal Representation of an Electoencephalogram for Emotion Recognition Using a Three-Dimensional Convolutional Neural Network.
    Cho J; Hwang H
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32575708
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unsupervised domain adaptation techniques based on auto-encoder for non-stationary EEG-based emotion recognition.
    Chai X; Wang Q; Zhao Y; Liu X; Bai O; Li Y
    Comput Biol Med; 2016 Dec; 79():205-214. PubMed ID: 27810626
    [TBL] [Abstract][Full Text] [Related]  

  • 28. DSE-Mixer: A pure multilayer perceptron network for emotion recognition from EEG feature maps.
    Lin K; Zhang L; Cai J; Sun J; Cui W; Liu G
    J Neurosci Methods; 2024 Jan; 401():110008. PubMed ID: 37967671
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Accelerating 3D Convolutional Neural Network with Channel Bottleneck Module for EEG-Based Emotion Recognition.
    Kim S; Kim TS; Lee WH
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146160
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Fast, Efficient Domain Adaptation Technique for Cross-Domain Electroencephalography(EEG)-Based Emotion Recognition.
    Chai X; Wang Q; Zhao Y; Li Y; Liu D; Liu X; Bai O
    Sensors (Basel); 2017 May; 17(5):. PubMed ID: 28467371
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spatial-temporal network for fine-grained-level emotion EEG recognition.
    Ji Y; Li F; Fu B; Li Y; Zhou Y; Niu Y; Zhang L; Chen Y; Shi G
    J Neural Eng; 2022 May; 19(3):. PubMed ID: 35523129
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deep Learning-Based Approach for Emotion Recognition Using Electroencephalography (EEG) Signals Using Bi-Directional Long Short-Term Memory (Bi-LSTM).
    Algarni M; Saeed F; Al-Hadhrami T; Ghabban F; Al-Sarem M
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458962
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cross-subject EEG-based Emotion Recognition Using Adversarial Domain Adaption with Attention Mechanism.
    Ye Y; Zhu X; Li Y; Pan T; He W
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1140-1144. PubMed ID: 34891489
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Domain Generative Graph Network for EEG-Based Emotion Recognition.
    Gu Y; Zhong X; Qu C; Liu C; Chen B
    IEEE J Biomed Health Inform; 2023 May; 27(5):2377-2386. PubMed ID: 37022448
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Data Augmentation for EEG-Based Emotion Recognition Using Generative Adversarial Networks.
    Bao G; Yan B; Tong L; Shu J; Wang L; Yang K; Zeng Y
    Front Comput Neurosci; 2021; 15():723843. PubMed ID: 34955797
    [TBL] [Abstract][Full Text] [Related]  

  • 36. M1M2: Deep-Learning-Based Real-Time Emotion Recognition from Neural Activity.
    Akter S; Prodhan RA; Pias TS; Eisenberg D; Fresneda Fernandez J
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366164
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exploration of effective electroencephalography features for the recognition of different valence emotions.
    Yang K; Tong L; Zeng Y; Lu R; Zhang R; Gao Y; Yan B
    Front Neurosci; 2022; 16():1010951. PubMed ID: 36325479
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Emotion Recognition from Multiband EEG Signals Using CapsNet.
    Chao H; Dong L; Liu Y; Lu B
    Sensors (Basel); 2019 May; 19(9):. PubMed ID: 31086110
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fusion of Multi-domain EEG Signatures Improves Emotion Recognition.
    Wang X; Pei Y; Luo Z; Zhao S; Xie L; Yan Y; Yin E; Liu S; Ming D
    J Integr Neurosci; 2024 Jan; 23(1):18. PubMed ID: 38287841
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multi-Kernel Temporal and Spatial Convolution for EEG-Based Emotion Classification.
    Emsawas T; Morita T; Kimura T; Fukui KI; Numao M
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365948
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.