These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 36201546)
1. Comparing virtual reality, desktop-based 3D, and 2D versions of a category learning experiment. Barrett RCA; Poe R; O'Camb JW; Woodruff C; Harrison SM; Dolguikh K; Chuong C; Klassen AD; Zhang R; Joseph RB; Blair MR PLoS One; 2022; 17(10):e0275119. PubMed ID: 36201546 [TBL] [Abstract][Full Text] [Related]
2. 3D virtual reality vs. 2D desktop registration user interface comparison. Bueckle A; Buehling K; Shih PC; Börner K PLoS One; 2021; 16(10):e0258103. PubMed ID: 34705835 [TBL] [Abstract][Full Text] [Related]
3. Comparing a virtual reality head-mounted display to on-screen three-dimensional visualization and two-dimensional computed tomography data for training in decision making in hepatic surgery: a randomized controlled study. Preukschas AA; Wise PA; Bettscheider L; Pfeiffer M; Wagner M; Huber M; Golriz M; Fischer L; Mehrabi A; Rössler F; Speidel S; Hackert T; Müller-Stich BP; Nickel F; Kenngott HG Surg Endosc; 2024 May; 38(5):2483-2496. PubMed ID: 38456945 [TBL] [Abstract][Full Text] [Related]
4. Exploring the effects of 3D-360°VR and 2D viewing modes on gaze behavior, head excursion, and workload during a boxing specific anticipation task. Loiseau Taupin M; Romeas T; Juste L; Labbé DR Front Psychol; 2023; 14():1235984. PubMed ID: 37680243 [TBL] [Abstract][Full Text] [Related]
5. Creating 3D models from Radiologic Images for Virtual Reality Medical Education Modules. Ammanuel S; Brown I; Uribe J; Rehani B J Med Syst; 2019 May; 43(6):166. PubMed ID: 31053902 [TBL] [Abstract][Full Text] [Related]
6. Eye movement characteristics in a mental rotation task presented in virtual reality. Tang Z; Liu X; Huo H; Tang M; Qiao X; Chen D; Dong Y; Fan L; Wang J; Du X; Guo J; Tian S; Fan Y Front Neurosci; 2023; 17():1143006. PubMed ID: 37051147 [TBL] [Abstract][Full Text] [Related]
7. Randomized study comparing 3D virtual reality and conventional 2D on-screen teaching of cerebrovascular anatomy. Greuter L; De Rosa A; Cattin P; Croci DM; Soleman J; Guzman R Neurosurg Focus; 2021 Aug; 51(2):E18. PubMed ID: 34333473 [TBL] [Abstract][Full Text] [Related]
8. EHTask: Recognizing User Tasks From Eye and Head Movements in Immersive Virtual Reality. Hu Z; Bulling A; Li S; Wang G IEEE Trans Vis Comput Graph; 2023 Apr; 29(4):1992-2004. PubMed ID: 34962869 [TBL] [Abstract][Full Text] [Related]
9. Using virtual reality for anatomical landmark annotation in geometric morphometrics. Messer D; Atchapero M; Jensen MB; Svendsen MS; Galatius A; Olsen MT; Frisvad JR; Dahl VA; Conradsen K; Dahl AB; Bærentzen A PeerJ; 2022; 10():e12869. PubMed ID: 35186472 [TBL] [Abstract][Full Text] [Related]
10. Desktop VR Is Better Than Non-ambulatory HMD VR for Spatial Learning. Srivastava P; Rimzhim A; Vijay P; Singh S; Chandra S Front Robot AI; 2019; 6():50. PubMed ID: 33501066 [TBL] [Abstract][Full Text] [Related]
11. The impact of positive, negative and neutral stimuli in a virtual reality cognitive-motor rehabilitation task: a pilot study with stroke patients. Cameirão MS; Faria AL; Paulino T; Alves J; Bermúdez I Badia S J Neuroeng Rehabil; 2016 Aug; 13(1):70. PubMed ID: 27503215 [TBL] [Abstract][Full Text] [Related]
12. Stereoscopic virtual reality does not improve knowledge acquisition of congenital heart disease. Patel N; Costa A; Sanders SP; Ezon D Int J Cardiovasc Imaging; 2021 Jul; 37(7):2283-2290. PubMed ID: 33677745 [TBL] [Abstract][Full Text] [Related]
13. Reaching in Several Realities: Motor and Cognitive Benefits of Different Visualization Technologies. Wenk N; Penalver-Andres J; Palma R; Buetler KA; Muri R; Nef T; Marchal-Crespo L IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1037-1042. PubMed ID: 31374766 [TBL] [Abstract][Full Text] [Related]
14. Consumers' food selection behaviors in three-dimensional (3D) virtual reality. Siegrist M; Ung CY; Zank M; Marinello M; Kunz A; Hartmann C; Menozzi M Food Res Int; 2019 Mar; 117():50-59. PubMed ID: 30736923 [TBL] [Abstract][Full Text] [Related]
15. A quantitative method for evaluation of 6 degree of freedom virtual reality systems. Jost TA; Drewelow G; Koziol S; Rylander J J Biomech; 2019 Dec; 97():109379. PubMed ID: 31679757 [TBL] [Abstract][Full Text] [Related]
16. Examining the effect of virtual reality therapy on cognition post-stroke: a systematic review and meta-analysis. Wiley E; Khattab S; Tang A Disabil Rehabil Assist Technol; 2022 Jan; 17(1):50-60. PubMed ID: 32363955 [TBL] [Abstract][Full Text] [Related]
17. Gaze-based attention network analysis in a virtual reality classroom. Stark P; Hasenbein L; Kasneci E; Göllner R MethodsX; 2024 Jun; 12():102662. PubMed ID: 38577409 [TBL] [Abstract][Full Text] [Related]
18. Enhanced Attention Using Head-mounted Virtual Reality. Li G; Anguera JA; Javed SV; Khan MA; Wang G; Gazzaley A J Cogn Neurosci; 2020 Aug; 32(8):1438-1454. PubMed ID: 32286132 [TBL] [Abstract][Full Text] [Related]
20. The same video game in 2D, 3D or virtual reality - How does technology impact game evaluation and brand placements? Roettl J; Terlutter R PLoS One; 2018; 13(7):e0200724. PubMed ID: 30028839 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]