These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 36201748)

  • 1. Kinetic Control of Angstrom-Scale Porosity in 2D Lattices for Direct Scalable Synthesis of Atomically Thin Proton Exchange Membranes.
    Moehring NK; Chaturvedi P; Cheng P; Ko W; Li AP; Boutilier MSH; Kidambi PR
    ACS Nano; 2022 Oct; 16(10):16003-16018. PubMed ID: 36201748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultra-thin proton conducting carrier layers for scalable integration of atomically thin 2D materials with proton exchange polymers for next-generation PEMs.
    Moehring NK; Naclerio AE; Chaturvedi P; Knight T; Kidambi PR
    Nanoscale; 2024 Apr; 16(14):6973-6983. PubMed ID: 38353333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differences in water and vapor transport through angstrom-scale pores in atomically thin membranes.
    Cheng P; Fornasiero F; Jue ML; Ko W; Li AP; Idrobo JC; Boutilier MSH; Kidambi PR
    Nat Commun; 2022 Nov; 13(1):6709. PubMed ID: 36344569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile Fabrication of Large-Area Atomically Thin Membranes by Direct Synthesis of Graphene with Nanoscale Porosity.
    Kidambi PR; Nguyen GD; Zhang S; Chen Q; Kong J; Warner J; Li AP; Karnik R
    Adv Mater; 2018 Dec; 30(49):e1804977. PubMed ID: 30368941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sandwiching h-BN Monolayer Films between Sulfonated Poly(ether ether ketone) and Nafion for Proton Exchange Membranes with Improved Ion Selectivity.
    Liu J; Yu L; Cai X; Khan U; Cai Z; Xi J; Liu B; Kang F
    ACS Nano; 2019 Feb; 13(2):2094-2102. PubMed ID: 30768234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decimeter-Scale Atomically Thin Graphene Membranes for Gas-Liquid Separation.
    Hou D; Zhang S; Chen X; Song R; Zhang D; Yao A; Sun J; Wang W; Sun L; Chen B; Liu Z; Wang L
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):10328-10335. PubMed ID: 33599473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoporous Atomically Thin Graphene Membranes for Desalting and Dialysis Applications.
    Kidambi PR; Jang D; Idrobo JC; Boutilier MSH; Wang L; Kong J; Karnik R
    Adv Mater; 2017 Sep; 29(33):. PubMed ID: 28656721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile Size-Selective Defect Sealing in Large-Area Atomically Thin Graphene Membranes for Sub-Nanometer Scale Separations.
    Cheng P; Kelly MM; Moehring NK; Ko W; Li AP; Idrobo JC; Boutilier MSH; Kidambi PR
    Nano Lett; 2020 Aug; 20(8):5951-5959. PubMed ID: 32628858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scalable synthesis of nanoporous atomically thin graphene membranes for dialysis and molecular separations
    Cheng P; Moehring NK; Idrobo JC; Ivanov IN; Kidambi PR
    Nanoscale; 2021 Feb; 13(5):2825-2837. PubMed ID: 33508042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Resolution Ion-Flux Imaging of Proton Transport through Graphene|Nafion Membranes.
    Bentley CL; Kang M; Bukola S; Creager SE; Unwin PR
    ACS Nano; 2022 Apr; 16(4):5233-5245. PubMed ID: 35286810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Sieving Across Centimeter-Scale Single-Layer Nanoporous Graphene Membranes.
    Boutilier MSH; Jang D; Idrobo JC; Kidambi PR; Hadjiconstantinou NG; Karnik R
    ACS Nano; 2017 Jun; 11(6):5726-5736. PubMed ID: 28609103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene Coating of Nafion Membranes for Enhanced Fuel Cell Performance.
    Ruhkopf J; Plachetka U; Moeller M; Pasdag O; Radev I; Peinecke V; Hepp M; Wiktor C; Lohe MR; Feng X; Butz B; Lemme MC
    ACS Appl Eng Mater; 2023 Mar; 1(3):947-954. PubMed ID: 37008885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sulfonated graphene oxide/Nafion composite membranes for high temperature and low humidity proton exchange membrane fuel cells.
    Vinothkannan M; Kim AR; Gnana Kumar G; Yoo DJ
    RSC Adv; 2018 Feb; 8(14):7494-7508. PubMed ID: 35539095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proton Conduction of Nafion Hybrid Membranes Promoted by NH
    Wang H; Zhao Y; Shao Z; Xu W; Wu Q; Ding X; Hou H
    ACS Appl Mater Interfaces; 2021 Feb; 13(6):7485-7497. PubMed ID: 33543925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective Proton/Deuteron Transport through Nafion|Graphene|Nafion Sandwich Structures at High Current Density.
    Bukola S; Liang Y; Korzeniewski C; Harris J; Creager S
    J Am Chem Soc; 2018 Feb; 140(5):1743-1752. PubMed ID: 29350035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Self-Assembly Enables Tuning of Nanopores in Atomically Thin Graphene Membranes for Highly Selective Transport.
    Jang D; Bakli C; Chakraborty S; Karnik R
    Adv Mater; 2022 Mar; 34(11):e2108940. PubMed ID: 34984739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid Nafion Membranes of Ionic Hydrogen-Bonded Organic Framework Materials for Proton Conduction and PEMFC Applications.
    Xu XQ; Cao LH; Yang Y; Zhao F; Bai XT; Zang SQ
    ACS Appl Mater Interfaces; 2021 Dec; 13(47):56566-56574. PubMed ID: 34787996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Scalable Route to Nanoporous Large-Area Atomically Thin Graphene Membranes by Roll-to-Roll Chemical Vapor Deposition and Polymer Support Casting.
    Kidambi PR; Mariappan DD; Dee NT; Vyatskikh A; Zhang S; Karnik R; Hart AJ
    ACS Appl Mater Interfaces; 2018 Mar; 10(12):10369-10378. PubMed ID: 29553242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable Pore Size from Sub-Nanometer to a Few Nanometers in Large-Area Graphene Nanoporous Atomically Thin Membranes.
    Chen X; Zhang S; Hou D; Duan H; Deng B; Zeng Z; Liu B; Sun L; Song R; Du J; Gao P; Peng H; Liu Z; Wang L
    ACS Appl Mater Interfaces; 2021 Jun; ():. PubMed ID: 34133124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative Studies of Atomically Thin Proton Conductive Films to Reduce Crossover in Hydrogen Fuel Cells.
    Kutagulla S; Le NH; Caldino Bohn IT; Stacy BJ; Favela CS; Slack JJ; Baker AM; Kim H; Shin HS; Korgel BA; Akinwande D
    ACS Appl Mater Interfaces; 2023 Dec; 15(51):59358-59369. PubMed ID: 38103256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.