These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 36201910)

  • 1. Generative deep learning applied to biomechanics: A new augmentation technique for motion capture datasets.
    Bicer M; Phillips ATM; Melis A; McGregor AH; Modenese L
    J Biomech; 2022 Nov; 144():111301. PubMed ID: 36201910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time conversion of inertial measurement unit data to ankle joint angles using deep neural networks.
    Senanayake D; Halgamuge S; Ackland DC
    J Biomech; 2021 Aug; 125():110552. PubMed ID: 34237661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of kinematics from inertial measurement units using a combined deep learning and optimization framework.
    Rapp E; Shin S; Thomsen W; Ferber R; Halilaj E
    J Biomech; 2021 Feb; 116():110229. PubMed ID: 33485143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Use of Synthetic IMU Signals in the Training of Deep Learning Models Significantly Improves the Accuracy of Joint Kinematic Predictions.
    Sharifi Renani M; Eustace AM; Myers CA; Clary CW
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of Lower Extremity Joint Moments and 3D Ground Reaction Forces Using IMU Sensors in Multiple Walking Conditions: A Deep Learning Approach.
    Hossain MSB; Guo Z; Choi H
    IEEE J Biomed Health Inform; 2023 Jun; 27(6):2829-2840. PubMed ID: 37030855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of hip joint centre mislocation on gait kinematics of children with cerebral palsy calculated using patient-specific direct and inverse kinematic models.
    Kainz H; Carty CP; Maine S; Walsh HPJ; Lloyd DG; Modenese L
    Gait Posture; 2017 Sep; 57():154-160. PubMed ID: 28641160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CNN-Based Estimation of Sagittal Plane Walking and Running Biomechanics From Measured and Simulated Inertial Sensor Data.
    Dorschky E; Nitschke M; Martindale CF; van den Bogert AJ; Koelewijn AD; Eskofier BM
    Front Bioeng Biotechnol; 2020; 8():604. PubMed ID: 32671032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of ground reaction forces during gait based on kinematics and a neural network model.
    Oh SE; Choi A; Mun JH
    J Biomech; 2013 Sep; 46(14):2372-80. PubMed ID: 23962528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lower body kinematics estimation from wearable sensors for walking and running: A deep learning approach.
    Hernandez V; Dadkhah D; Babakeshizadeh V; Kulić D
    Gait Posture; 2021 Jan; 83():185-193. PubMed ID: 33161275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Joint kinematic calculation based on clinical direct kinematic versus inverse kinematic gait models.
    Kainz H; Modenese L; Lloyd DG; Maine S; Walsh HPJ; Carty CP
    J Biomech; 2016 Jun; 49(9):1658-1669. PubMed ID: 27139005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Physics-Informed Low-Shot Adversarial Learning for sEMG-Based Estimation of Muscle Force and Joint Kinematics.
    Shi Y; Ma S; Zhao Y; Shi C; Zhang Z
    IEEE J Biomed Health Inform; 2024 Mar; 28(3):1309-1320. PubMed ID: 38150340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating 3D L5/S1 moments and ground reaction forces during trunk bending using a full-body ambulatory inertial motion capture system.
    Faber GS; Chang CC; Kingma I; Dennerlein JT; van Dieën JH
    J Biomech; 2016 Apr; 49(6):904-912. PubMed ID: 26795123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The importance of a consistent workflow to estimate muscle-tendon lengths based on joint angles from the conventional gait model.
    Kainz H; Schwartz MH
    Gait Posture; 2021 Jul; 88():1-9. PubMed ID: 33933913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. American society of biomechanics early career achievement award 2020: Toward portable and modular biomechanics labs: How video and IMU fusion will change gait analysis.
    Halilaj E; Shin S; Rapp E; Xiang D
    J Biomech; 2021 Dec; 129():110650. PubMed ID: 34644610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of kinematic parameters of children gait obtained by inverse and direct models.
    Ziziene J; Daunoraviciene K; Juskeniene G; Raistenskis J
    PLoS One; 2022; 17(6):e0270423. PubMed ID: 35749351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Data augmentation for enhancing EEG-based emotion recognition with deep generative models.
    Luo Y; Zhu LZ; Wan ZY; Lu BL
    J Neural Eng; 2020 Oct; 17(5):056021. PubMed ID: 33052888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generative adversarial networks with decoder-encoder output noises.
    Zhong G; Gao W; Liu Y; Yang Y; Wang DH; Huang K
    Neural Netw; 2020 Jul; 127():19-28. PubMed ID: 32315932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of the ground reaction forces from a single video camera based on the spring-like center of mass dynamics of human walking.
    Jeong H; Park S
    J Biomech; 2020 Dec; 113():110074. PubMed ID: 33176224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel dataset and deep learning-based approach for marker-less motion capture during gait.
    Vafadar S; Skalli W; Bonnet-Lebrun A; Khalifé M; Renaudin M; Hamza A; Gajny L
    Gait Posture; 2021 May; 86():70-76. PubMed ID: 33711613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of joint moments from kinematics using machine learning in children with congenital talipes equino varus and typically developing peers.
    Kothurkar R; Gad M; Padate A; Rathod C; Bhaskar A; Lekurwale R; Rose J
    J Orthop; 2024 Nov; 57():83-89. PubMed ID: 39006209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.