These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 36202246)

  • 1. Iron carbon particle dosing for odor control in sewers: Laboratory tests.
    Yongchao Z; Lei T; Wenming Z; Yiping Z; Lei F; Tuqiao Z
    Environ Res; 2023 Jan; 216(Pt 1):114476. PubMed ID: 36202246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Different ferric dosing strategies could result in different control mechanisms of sulfide and methane production in sediments of gravity sewers.
    Cao J; Zhang L; Hong J; Sun J; Jiang F
    Water Res; 2019 Nov; 164():114914. PubMed ID: 31400595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Indirect sulfur reduction via polysulfide contributes to serious odor problem in a sewer receiving nitrate dosage.
    Liang S; Zhang L; Jiang F
    Water Res; 2016 Sep; 100():421-428. PubMed ID: 27232986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A biological strategy for sulfide control in sewers: Removing sulfide by sulfur-oxidizing bacteria.
    Yuan X; Sun Y; Ni D; Xie Z; Zhang Y; Miao S; Wu L; Xing X; Zuo J
    J Environ Manage; 2023 Dec; 348():119237. PubMed ID: 37832290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing sulfide mitigation via the sustainable supply of oxygen from air-nanobubbles in gravity sewers.
    Zhang Z; Chang N; Wang S; Lu J; Li K; Zheng C
    Sci Total Environ; 2022 Feb; 808():152203. PubMed ID: 34890666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-situ advanced oxidation of sediment iron for sulfide control in sewers.
    Liu Y; Zuo Z; Li H; Xing Y; Cheng D; Guo M; Liu T; Zheng M; Yuan Z; Huang X
    Water Res; 2023 Jul; 240():120077. PubMed ID: 37247440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial community structures and in situ sulfate-reducing and sulfur-oxidizing activities in biofilms developed on mortar specimens in a corroded sewer system.
    Satoh H; Odagiri M; Ito T; Okabe S
    Water Res; 2009 Oct; 43(18):4729-39. PubMed ID: 19709714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feasibility of sulfide control in sewers by reuse of iron rich drinking water treatment sludge.
    Sun J; Pikaar I; Sharma KR; Keller J; Yuan Z
    Water Res; 2015 Mar; 71():150-9. PubMed ID: 25616115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Odor reduction using hydrogen sulfide-removing bacteria in sludge filtration systems: Ferrous-oxidizing bacteria and sulfur-oxidizing bacteria.
    Choi D; Lee S; Park H; Kim J; Park W; Jung J
    J Biosci Bioeng; 2023 May; 135(5):395-401. PubMed ID: 36878769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of fluctuations in gaseous H2S concentrations on sulfide uptake by sewer concrete: The effect of high H2S loads.
    Sun X; Jiang G; Bond PL; Keller J
    Water Res; 2015 Sep; 81():84-91. PubMed ID: 26043374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen sulfide control in sewer systems: A critical review of recent progress.
    Zhang L; Qiu YY; Sharma KR; Shi T; Song Y; Sun J; Liang Z; Yuan Z; Jiang F
    Water Res; 2023 Jul; 240():120046. PubMed ID: 37224665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid dynamic quantification of sulfide generation flux in spatially heterogeneous sediments of gravity sewers.
    Zuo Z; Ren D; Qiao L; Li H; Huang X; Liu Y
    Water Res; 2021 Sep; 203():117494. PubMed ID: 34412021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of pipe material and surfaces on sulfide related odor and corrosion in sewers.
    Nielsen AH; Vollertsen J; Jensen HS; Wium-Andersen T; Hvitved-Jacobsen T
    Water Res; 2008 Sep; 42(15):4206-14. PubMed ID: 18723203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous use of nitrate and calcium peroxide to control sulfide and greenhouse gas emission in sewers.
    Zhang G; Wang G; Zhou Y; Zhu DZ; Zhang Y; Zhang T
    Sci Total Environ; 2023 Jan; 855():158913. PubMed ID: 36411604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Case study of H
    Yang Z; Zhu DZ; Yu T; Edwini-Bonsu S; Shypanski A; Liu Y
    Water Sci Technol; 2020 Dec; 82(11):2271-2281. PubMed ID: 33339783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of Hydrogen Sulfide in Septic Tanks for Treating Black Water via an Immobilized Media of Sulfur-Oxidizing Bacteria.
    Kang JH; Namgung HG; Cho JI; Yoo SS; Lee BJ; Ji HW
    Int J Environ Res Public Health; 2020 Jan; 17(3):. PubMed ID: 31973062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Full-scale investigation of in-situ iron and alkalinity generation for efficient sulfide control.
    Pikaar I; Flugen M; Lin HW; Salehin S; Li J; Donose BC; Dennis PG; Bethke L; Johnson I; Rabaey K; Yuan Z
    Water Res; 2019 Dec; 167():115032. PubMed ID: 31546029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling sulfide production in full flow concrete sewers based on the HRT variation of sewerage.
    Wang J; Xu X; Liu S; Shao Y; Zhang J; Wang J; Li Q; He Y; Wang Y; Sun W; Luo F; Qi W; Liu G; Qi L; Wang H
    Water Sci Technol; 2021 May; 83(9):2063-2074. PubMed ID: 33989176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transformation of sulfur in the sediment-water system of the sewage pipeline under different hydraulic retention time.
    Liu C; Wei H; Liu Q; Tao Y; Xie Y; Zhou C
    Environ Pollut; 2023 Nov; 337():122596. PubMed ID: 37748641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved sulfide mitigation in sewers through on-line control of ferrous salt dosing.
    Ganigué R; Jiang G; Liu Y; Sharma K; Wang YC; Gonzalez J; Nguyen T; Yuan Z
    Water Res; 2018 May; 135():302-310. PubMed ID: 29477793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.