These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 36202282)
1. Influence of key operational parameters on biohydrogen production from fruit and vegetable waste via lactate-driven dark fermentation. Martínez-Mendoza LJ; Lebrero R; Muñoz R; García-Depraect O Bioresour Technol; 2022 Nov; 364():128070. PubMed ID: 36202282 [TBL] [Abstract][Full Text] [Related]
2. Biohydrogen production by lactate-driven dark fermentation of real organic wastes derived from solid waste treatment plants. Martínez-Fraile C; Muñoz R; Teresa Simorte M; Sanz I; García-Depraect O Bioresour Technol; 2024 Jul; 403():130846. PubMed ID: 38754561 [TBL] [Abstract][Full Text] [Related]
3. Unlocking the high-rate continuous performance of fermentative hydrogen bioproduction from fruit and vegetable residues by modulating hydraulic retention time. Martínez-Mendoza LJ; García-Depraect O; Muñoz R Bioresour Technol; 2023 Apr; 373():128716. PubMed ID: 36764366 [TBL] [Abstract][Full Text] [Related]
4. The influence of total solids content and initial pH on batch biohydrogen production by solid substrate fermentation of agroindustrial wastes. Robledo-Narváez PN; Muñoz-Páez KM; Poggi-Varaldo HM; Ríos-Leal E; Calva-Calva G; Ortega-Clemente LA; Rinderknecht-Seijas N; Estrada-Vázquez C; Ponce-Noyola MT; Salazar-Montoya JA J Environ Manage; 2013 Oct; 128():126-37. PubMed ID: 23732191 [TBL] [Abstract][Full Text] [Related]
5. Effect of total solids content on biohydrogen production and lactic acid accumulation during dark fermentation of organic waste biomass. Ghimire A; Trably E; Frunzo L; Pirozzi F; Lens PNL; Esposito G; Cazier EA; Escudié R Bioresour Technol; 2018 Jan; 248(Pt A):180-186. PubMed ID: 28764910 [TBL] [Abstract][Full Text] [Related]
6. Hyperthermophilic hydrogen production in a simplified reaction medium containing onion wastes as a source of carbon and sulfur. Saidi R; Hamdi M; Bouallagui H Environ Sci Pollut Res Int; 2020 May; 27(14):17382-17392. PubMed ID: 32157539 [TBL] [Abstract][Full Text] [Related]
7. Biohydrogen production based on the evaluation of kinetic parameters of a mixed microbial culture using glucose and fruit-vegetable waste as feedstocks. Garcia-Peña EI; Canul-Chan M; Chairez I; Salgado-Manjarez E; Aranda-Barradas J Appl Biochem Biotechnol; 2013 Sep; 171(2):279-93. PubMed ID: 23832860 [TBL] [Abstract][Full Text] [Related]
8. Effects of operational parameters on dark fermentative hydrogen production from biodegradable complex waste biomass. Ghimire A; Sposito F; Frunzo L; Trably E; Escudié R; Pirozzi F; Lens PN; Esposito G Waste Manag; 2016 Apr; 50():55-64. PubMed ID: 26876775 [TBL] [Abstract][Full Text] [Related]
9. Effects of biochar on ethanol-type and butyrate-type fermentative hydrogen productions. Li W; He L; Cheng C; Cao G; Ren N Bioresour Technol; 2020 Jun; 306():123088. PubMed ID: 32169508 [TBL] [Abstract][Full Text] [Related]
10. Biohydrogen from thermophilic co-fermentation of swine manure with fruit and vegetable waste: maximizing stable production without pH control. Tenca A; Schievano A; Perazzolo F; Adani F; Oberti R Bioresour Technol; 2011 Sep; 102(18):8582-8. PubMed ID: 21530242 [TBL] [Abstract][Full Text] [Related]
11. Simultaneous biohydrogen production from dark fermentation of duckweed and waste utilization for microalgal lipid production. Mu D; Liu H; Lin W; Shukla P; Luo J Bioresour Technol; 2020 Apr; 302():122879. PubMed ID: 32028148 [TBL] [Abstract][Full Text] [Related]
12. Effect of operational pH on biohydrogen production from food waste using anaerobic batch reactors. Lee C; Lee S; Han SK; Hwang S Water Sci Technol; 2014; 69(9):1886-93. PubMed ID: 24804664 [TBL] [Abstract][Full Text] [Related]
13. Effects of temperature and total solid content on biohydrogen production from dark fermentation of rice straw: Performance and microbial community characteristics. Chen H; Wu J; Huang R; Zhang W; He W; Deng Z; Han Y; Xiao B; Luo H; Qu W Chemosphere; 2022 Jan; 286(Pt 1):131655. PubMed ID: 34315083 [TBL] [Abstract][Full Text] [Related]
14. Biohydrogen production from co-substrates through dark fermentation by bacterial consortium. Mumtha C; Mahalingam PU 3 Biotech; 2024 Nov; 14(11):281. PubMed ID: 39464519 [TBL] [Abstract][Full Text] [Related]
15. Biorefinery concept comprising acid hydrolysis, dark fermentation, and anaerobic digestion for co-processing of fruit and vegetable wastes and corn stover. Rodríguez-Valderrama S; Escamilla-Alvarado C; Rivas-García P; Magnin JP; Alcalá-Rodríguez M; García-Reyes RB Environ Sci Pollut Res Int; 2020 Aug; 27(23):28585-28596. PubMed ID: 32266619 [TBL] [Abstract][Full Text] [Related]
16. Co-fermentation of residual algal biomass and glucose under the influence of Fe Srivastava N; Srivastava M; Singh R; Syed A; Bahadur Pal D; Elgorban AM; Kushwaha D; Mishra PK; Gupta VK Bioresour Technol; 2021 Dec; 342():126034. PubMed ID: 34592453 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of metabolism using stoichiometry in fermentative biohydrogen. Lee HS; Rittmann BE Biotechnol Bioeng; 2009 Feb; 102(3):749-58. PubMed ID: 18828179 [TBL] [Abstract][Full Text] [Related]
18. Dynamics of bacterial communities and substrate conversion during olive-mill waste dark fermentation: Prediction of the metabolic routes for hydrogen production. Mugnai G; Borruso L; Mimmo T; Cesco S; Luongo V; Frunzo L; Fabbricino M; Pirozzi F; Cappitelli F; Villa F Bioresour Technol; 2021 Jan; 319():124157. PubMed ID: 32987280 [TBL] [Abstract][Full Text] [Related]
19. Biohydrogen production at pH below 3.0: Is it possible? Mota VT; Ferraz Júnior ADN; Trably E; Zaiat M Water Res; 2018 Jan; 128():350-361. PubMed ID: 29121503 [TBL] [Abstract][Full Text] [Related]
20. Biohydrogen production from dairy manures with acidification pretreatment by anaerobic fermentation. Xing Y; Li Z; Fan Y; Hou H Environ Sci Pollut Res Int; 2010 Feb; 17(2):392-9. PubMed ID: 19499259 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]