These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 36202440)
1. Potential of Deep Learning in Quantitative Magnetic Resonance Imaging for Personalized Radiotherapy. Gurney-Champion OJ; Landry G; Redalen KR; Thorwarth D Semin Radiat Oncol; 2022 Oct; 32(4):377-388. PubMed ID: 36202440 [TBL] [Abstract][Full Text] [Related]
2. Feasibility of Multiparametric Positron Emission Tomography/Magnetic Resonance Imaging as a One-Stop Shop for Radiation Therapy Planning for Patients with Head and Neck Cancer. Olin AB; Hansen AE; Rasmussen JH; Ladefoged CN; Berthelsen AK; Håkansson K; Vogelius IR; Specht L; Gothelf AB; Kjaer A; Fischer BM; Andersen FL Int J Radiat Oncol Biol Phys; 2020 Dec; 108(5):1329-1338. PubMed ID: 32682955 [TBL] [Abstract][Full Text] [Related]
3. Intentional deep overfit learning (IDOL): A novel deep learning strategy for adaptive radiation therapy. Chun J; Park JC; Olberg S; Zhang Y; Nguyen D; Wang J; Kim JS; Jiang S Med Phys; 2022 Jan; 49(1):488-496. PubMed ID: 34791672 [TBL] [Abstract][Full Text] [Related]
4. Development of an anthropomorphic multimodality pelvic phantom for quantitative evaluation of a deep-learning-based synthetic computed tomography generation technique. Jin H; Lee SY; An HJ; Choi CH; Chie EK; Wu HG; Park JM; Park S; Kim JI J Appl Clin Med Phys; 2022 Aug; 23(8):e13644. PubMed ID: 35579090 [TBL] [Abstract][Full Text] [Related]
5. Synthetic CT reconstruction using a deep spatial pyramid convolutional framework for MR-only breast radiotherapy. Olberg S; Zhang H; Kennedy WR; Chun J; Rodriguez V; Zoberi I; Thomas MA; Kim JS; Mutic S; Green OL; Park JC Med Phys; 2019 Sep; 46(9):4135-4147. PubMed ID: 31309586 [TBL] [Abstract][Full Text] [Related]
6. Magnetic Resonance Parameter Mapping using Self-supervised Deep Learning with Model Reinforcement. Bian W; Jang A; Liu F ArXiv; 2023 Jul; ():. PubMed ID: 37547657 [TBL] [Abstract][Full Text] [Related]
7. Deep learning based synthetic-CT generation in radiotherapy and PET: A review. Spadea MF; Maspero M; Zaffino P; Seco J Med Phys; 2021 Nov; 48(11):6537-6566. PubMed ID: 34407209 [TBL] [Abstract][Full Text] [Related]
8. MRI-only brain radiotherapy: Assessing the dosimetric accuracy of synthetic CT images generated using a deep learning approach. Kazemifar S; McGuire S; Timmerman R; Wardak Z; Nguyen D; Park Y; Jiang S; Owrangi A Radiother Oncol; 2019 Jul; 136():56-63. PubMed ID: 31015130 [TBL] [Abstract][Full Text] [Related]
9. Deep learning methods to generate synthetic CT from MRI in radiotherapy: A literature review. Boulanger M; Nunes JC; Chourak H; Largent A; Tahri S; Acosta O; De Crevoisier R; Lafond C; Barateau A Phys Med; 2021 Sep; 89():265-281. PubMed ID: 34474325 [TBL] [Abstract][Full Text] [Related]
10. Comparison of Supervised and Unsupervised Deep Learning Methods for Medical Image Synthesis between Computed Tomography and Magnetic Resonance Images. Li Y; Li W; Xiong J; Xia J; Xie Y Biomed Res Int; 2020; 2020():5193707. PubMed ID: 33204701 [TBL] [Abstract][Full Text] [Related]
11. Improvement of image quality at CT and MRI using deep learning. Higaki T; Nakamura Y; Tatsugami F; Nakaura T; Awai K Jpn J Radiol; 2019 Jan; 37(1):73-80. PubMed ID: 30498876 [TBL] [Abstract][Full Text] [Related]
12. A deep learning approach to generate synthetic CT in low field MR-guided adaptive radiotherapy for abdominal and pelvic cases. Cusumano D; Lenkowicz J; Votta C; Boldrini L; Placidi L; Catucci F; Dinapoli N; Antonelli MV; Romano A; De Luca V; Chiloiro G; Indovina L; Valentini V Radiother Oncol; 2020 Dec; 153():205-212. PubMed ID: 33075394 [TBL] [Abstract][Full Text] [Related]
14. MRI-based treatment planning for liver stereotactic body radiotherapy: validation of a deep learning-based synthetic CT generation method. Liu Y; Lei Y; Wang T; Kayode O; Tian S; Liu T; Patel P; Curran WJ; Ren L; Yang X Br J Radiol; 2019 Aug; 92(1100):20190067. PubMed ID: 31192695 [TBL] [Abstract][Full Text] [Related]
15. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging. Fu J; Yang Y; Singhrao K; Ruan D; Chu FI; Low DA; Lewis JH Med Phys; 2019 Sep; 46(9):3788-3798. PubMed ID: 31220353 [TBL] [Abstract][Full Text] [Related]
16. Synthetic MRI-aided multi-organ segmentation on male pelvic CT using cycle consistent deep attention network. Dong X; Lei Y; Tian S; Wang T; Patel P; Curran WJ; Jani AB; Liu T; Yang X Radiother Oncol; 2019 Dec; 141():192-199. PubMed ID: 31630868 [TBL] [Abstract][Full Text] [Related]
17. Streamlined magnetic resonance fingerprinting: Fast whole-brain coverage with deep-learning based parameter estimation. Khajehim M; Christen T; Tam F; Graham SJ Neuroimage; 2021 Sep; 238():118237. PubMed ID: 34091035 [TBL] [Abstract][Full Text] [Related]
18. Abdominal, multi-organ, auto-contouring method for online adaptive magnetic resonance guided radiotherapy: An intelligent, multi-level fusion approach. Liang F; Qian P; Su KH; Baydoun A; Leisser A; Van Hedent S; Kuo JW; Zhao K; Parikh P; Lu Y; Traughber BJ; Muzic RF Artif Intell Med; 2018 Aug; 90():34-41. PubMed ID: 30054121 [TBL] [Abstract][Full Text] [Related]
19. Comparative study of algorithms for synthetic CT generation from MRI: Consequences for MRI-guided radiation planning in the pelvic region. Arabi H; Dowling JA; Burgos N; Han X; Greer PB; Koutsouvelis N; Zaidi H Med Phys; 2018 Nov; 45(11):5218-5233. PubMed ID: 30216462 [TBL] [Abstract][Full Text] [Related]
20. Deep Learning for Quantitative Cardiac MRI. Tao Q; Lelieveldt BPF; van der Geest RJ AJR Am J Roentgenol; 2020 Mar; 214(3):529-535. PubMed ID: 31670597 [No Abstract] [Full Text] [Related] [Next] [New Search]