These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 36202628)

  • 1. Amines as Catalysts: Dynamic Features and Kinetic Control of Catalytic Asymmetric Chemical Transformations to Form C-C Bonds and Complex Molecules.
    Tanaka F
    Chem Rec; 2023 Jul; 23(7):e202200207. PubMed ID: 36202628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design, Synthesis, and Application of Chiral Bicyclic Imidazole Catalysts.
    Wang M; Zhang Z; Zhang W
    Acc Chem Res; 2022 Sep; 55(18):2708-2727. PubMed ID: 36043467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Asymmetric Reactions Enabled by Cooperative Enantioselective Amino- and Lewis Acid Catalysis.
    Cozzi PG; Gualandi A; Potenti S; Calogero F; Rodeghiero G
    Top Curr Chem (Cham); 2019 Nov; 378(1):1. PubMed ID: 31761979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vitamin B
    Xiao X; Zhao B
    Acc Chem Res; 2023 May; 56(9):1097-1117. PubMed ID: 37071776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asymmetric organocatalysis combined with metal catalysis: concept, proof of concept, and beyond.
    Chen DF; Han ZY; Zhou XL; Gong LZ
    Acc Chem Res; 2014 Aug; 47(8):2365-77. PubMed ID: 24911184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pushing the limits of aminocatalysis: enantioselective transformations of α-branched β-ketocarbonyls and vinyl ketones by chiral primary amines.
    Zhang L; Fu N; Luo S
    Acc Chem Res; 2015 Apr; 48(4):986-97. PubMed ID: 25831453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of Cinchona Alkaloids in the Enantio- and Diastereoselective Synthesis of Axially Chiral Compounds.
    Portolani C; Centonze G; Righi P; Bencivenni G
    Acc Chem Res; 2022 Dec; 55(24):3551-3571. PubMed ID: 36475607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New developments in enantioselective Brønsted acid catalysis: chiral ion pair catalysis and beyond.
    Rueping M; Sugiono E
    Ernst Schering Found Symp Proc; 2007; (2):207-53. PubMed ID: 18642527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic kinetic asymmetric transformation (DYKAT) by combined amine- and transition-metal-catalyzed enantioselective cycloisomerization.
    Zhao GL; Ullah F; Deiana L; Lin S; Zhang Q; Sun J; Ibrahem I; Dziedzic P; Córdova A
    Chemistry; 2010 Feb; 16(5):1585-91. PubMed ID: 20039352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enantioselective Transformations by "1 +
    Cai M; Zhang L; Zhang W; Lin Q; Luo S
    Acc Chem Res; 2024 May; 57(10):1523-1537. PubMed ID: 38700481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organocatalysis Combined with Photocatalysis.
    Liu YY; Liu J; Lu LQ; Xiao WJ
    Top Curr Chem (Cham); 2019 Nov; 377(6):37. PubMed ID: 31728771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enantioselective organo-cascade catalysis.
    Huang Y; Walji AM; Larsen CH; MacMillan DW
    J Am Chem Soc; 2005 Nov; 127(43):15051-3. PubMed ID: 16248643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The diarylprolinol silyl ether system: a general organocatalyst.
    Jensen KL; Dickmeiss G; Jiang H; Albrecht L; Jørgensen KA
    Acc Chem Res; 2012 Feb; 45(2):248-64. PubMed ID: 21848275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brønsted-acid-catalyzed asymmetric multicomponent reactions for the facile synthesis of highly enantioenriched structurally diverse nitrogenous heterocycles.
    Yu J; Shi F; Gong LZ
    Acc Chem Res; 2011 Nov; 44(11):1156-71. PubMed ID: 21800828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asymmetric catalysis with chiral primary amine-based organocatalysts.
    Xu LW; Luo J; Lu Y
    Chem Commun (Camb); 2009 Apr; (14):1807-21. PubMed ID: 19319412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-pot organocatalytic asymmetric synthesis of 3-nitro-1,2-dihydroquinolines by a dual-activation protocol.
    Wang YF; Zhang W; Luo SP; Li BL; Xia AB; Zhong AG; Xu DQ
    Chem Asian J; 2009 Dec; 4(12):1834-1838. PubMed ID: 19830777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Examples of catalytic asymmetric amine synthesis using organic catalysts.
    Rios R; Córdova A
    Curr Opin Drug Discov Devel; 2009 Nov; 12(6):824-47. PubMed ID: 19894193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CuH-Catalyzed Olefin Functionalization: From Hydroamination to Carbonyl Addition.
    Liu RY; Buchwald SL
    Acc Chem Res; 2020 Jun; 53(6):1229-1243. PubMed ID: 32401530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The azomethine ylide route to amine C-H functionalization: redox-versions of classic reactions and a pathway to new transformations.
    Seidel D
    Acc Chem Res; 2015 Feb; 48(2):317-28. PubMed ID: 25560649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of C-N Atropisomers by Aminocatalytic Enantioselective Addition of Indole-2-carboxaldehydes to o-Quinone Derivatives.
    Corti V; Thøgersen MK; Enemaerke VJ; Rezayee NM; Barløse CL; Anker Jørgensen K
    Chemistry; 2022 Oct; 28(60):e202202395. PubMed ID: 35921208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.