These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 36202630)
1. Tetracyanobutadiene Bridged Push-Pull Chromophores: Development of New Generation Optoelectronic Materials. Patil Y; Butenschön H; Misra R Chem Rec; 2023 Jan; 23(1):e202200208. PubMed ID: 36202630 [TBL] [Abstract][Full Text] [Related]
2. The [2+2] Cycloaddition-Retroelectrocyclization (CA-RE) Click Reaction: Facile Access to Molecular and Polymeric Push-Pull Chromophores. Michinobu T; Diederich F Angew Chem Int Ed Engl; 2018 Mar; 57(14):3552-3577. PubMed ID: 29469183 [TBL] [Abstract][Full Text] [Related]
3. Accelerated Intramolecular Charge Transfer in Tetracyanobutadiene- and Expanded Tetracyanobutadiene-Incorporated Asymmetric Triphenylamine-Quinoxaline Push-Pull Conjugates. Jang Y; Sekaran B; Singh PP; Misra R; D'Souza F J Phys Chem A; 2023 May; 127(20):4455-4462. PubMed ID: 37192382 [TBL] [Abstract][Full Text] [Related]
5. Synthesis and Characterization of Isoindigo-Based Push-Pull Chromophores. Rout Y; Chauhan V; Misra R J Org Chem; 2020 Apr; 85(7):4611-4618. PubMed ID: 32126766 [TBL] [Abstract][Full Text] [Related]
6. Strong Ground- and Excited-State Charge Transfer in C Sharma R; Thomas MB; Misra R; D'Souza F Angew Chem Int Ed Engl; 2019 Mar; 58(13):4350-4355. PubMed ID: 30710495 [TBL] [Abstract][Full Text] [Related]
7. Diketopyrrolopyrrole-Based and Tetracyano-Bridged Small Molecules for Bulk Heterojunction Organic Solar Cells. Patil Y; Misra R Chem Asian J; 2018 Feb; 13(3):220-229. PubMed ID: 29219247 [TBL] [Abstract][Full Text] [Related]
8. Synthesis of push-pull chromophores by the sequential [2 + 2] cycloaddition of 1-azulenylbutadiynes with tetracyanoethylene and tetrathiafulvalene. Shoji T; Ito S; Okujima T; Morita N Org Biomol Chem; 2012 Oct; 10(41):8308-13. PubMed ID: 22976540 [TBL] [Abstract][Full Text] [Related]
9. Synthesis and Characterization of Tetraphenylethene AIEgen-Based Push-Pull Chromophores for Photothermal Applications: Could the Cycloaddition-Retroelectrocyclization Click Reaction Make Any Molecule Photothermally Active? Roger M; Bretonnière Y; Trolez Y; Vacher A; Arbouch I; Cornil J; Félix G; De Winter J; Richeter S; Clément S; Gerbier P Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37240061 [TBL] [Abstract][Full Text] [Related]
10. Near-IR absorbing 1,1,4,4-tetracyanobutadiene-functionalized phenothiazine sulfones. Sheokand M; Ji Tiwari N; Misra R Org Biomol Chem; 2023 May; 21(18):3896-3905. PubMed ID: 37165921 [TBL] [Abstract][Full Text] [Related]
11. Perspectives on push-pull chromophores derived from click-type [2 + 2] cycloaddition-retroelectrocyclization reactions of electron-rich alkynes and electron-deficient alkenes. Yamada M Beilstein J Org Chem; 2024; 20():125-154. PubMed ID: 38292046 [TBL] [Abstract][Full Text] [Related]
12. Synthesis, Structure, and Significant Energy Gap Modulation of Symmetrical Silafluorene-Cored Tetracyanobutadiene and Tetracyanoquinodimethane Derivatives. Zhang Z; Gou G; Wan J; Li H; Wang M; Li L J Org Chem; 2022 Mar; 87(5):2470-2479. PubMed ID: 35080882 [TBL] [Abstract][Full Text] [Related]
13. BODIPY derivatives with near infra-red absorption as small molecule donors for bulk heterojunction solar cells. Marques Dos Santos J; Jagadamma LK; Latif NM; Ruseckas A; Samuel IDW; Cooke G RSC Adv; 2019 May; 9(27):15410-15423. PubMed ID: 35514843 [TBL] [Abstract][Full Text] [Related]
14. Synthesis, properties, and redox behavior of tetracyanobutadiene and dicyanoquinodimethane chromophores bearing two azulenyl substituents. Shoji T; Maruyama M; Shimomura E; Maruyama A; Ito S; Okujima T; Toyota K; Morita N J Org Chem; 2013 Dec; 78(24):12513-24. PubMed ID: 24304450 [TBL] [Abstract][Full Text] [Related]
15. NIR-Absorbing 1,1,4,4-Tetracyanobuta-1,3-diene- and Dicyanoquinodimethane-Functionalized Donor-Acceptor Phenothiazine Derivatives: Synthesis and Characterization. Gupta PK; Khan F; Misra R J Org Chem; 2023 Oct; 88(20):14308-14322. PubMed ID: 37820059 [TBL] [Abstract][Full Text] [Related]
17. Triphenylamine/Tetracyanobutadiene-Based π-Conjugated Push-Pull Molecules End-Capped with Arene Platforms: Synthesis, Photophysics, and Photovoltaic Response. Simón Marqués P; Castán JMA; Raul BAL; Londi G; Ramirez I; Pshenichnikov MS; Beljonne D; Walzer K; Blais M; Allain M; Cabanetos C; Blanchard P Chemistry; 2020 Dec; 26(69):16422-16433. PubMed ID: 32701173 [TBL] [Abstract][Full Text] [Related]
18. Synthesis of 1,3-bis(tetracyano-2-azulenyl-3-butadienyl)azulenes by the [2+2] cycloaddition-retroelectrocyclization of 1,3-bis(azulenylethynyl)azulenes with tetracyanoethylene. Shoji T; Maruyama M; Maruyama A; Ito S; Okujima T; Toyota K Chemistry; 2014 Sep; 20(37):11903-12. PubMed ID: 25098400 [TBL] [Abstract][Full Text] [Related]
19. Rational Engineering of BODIPY-Bridged Trisindole Derivatives for Solar Cell Applications. Bulut I; Huaulmé Q; Mirloup A; Chávez P; Fall S; Hébraud A; Méry S; Heinrich B; Heiser T; Lévêque P; Leclerc N ChemSusChem; 2017 May; 10(9):1878-1882. PubMed ID: 28326678 [TBL] [Abstract][Full Text] [Related]
20. Triphenylamine-Merocyanine-Based D1-A1-π-A2/A3-D2 Chromophore System: Synthesis, Optoelectronic, and Theoretical Studies. Srinivasa Rao P; L Puyad A; V Bhosale S; V Bhosale S Int J Mol Sci; 2019 Apr; 20(7):. PubMed ID: 30939780 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]