These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 36202759)

  • 1. Pre-Training of Equivariant Graph Matching Networks with Conformation Flexibility for Drug Binding.
    Wu F; Jin S; Jiang Y; Jin X; Tang B; Niu Z; Liu X; Zhang Q; Zeng X; Li SZ
    Adv Sci (Weinh); 2022 Nov; 9(33):e2203796. PubMed ID: 36202759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Equivariant Flexible Modeling of the Protein-Ligand Binding Pose with Geometric Deep Learning.
    Dong T; Yang Z; Zhou J; Chen CY
    J Chem Theory Comput; 2023 Nov; 19(22):8446-8459. PubMed ID: 37938978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DynamicBind: predicting ligand-specific protein-ligand complex structure with a deep equivariant generative model.
    Lu W; Zhang J; Huang W; Zhang Z; Jia X; Wang Z; Shi L; Li C; Wolynes PG; Zheng S
    Nat Commun; 2024 Feb; 15(1):1071. PubMed ID: 38316797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials.
    Batzner S; Musaelian A; Sun L; Geiger M; Mailoa JP; Kornbluth M; Molinari N; Smidt TE; Kozinsky B
    Nat Commun; 2022 May; 13(1):2453. PubMed ID: 35508450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EGGNet, a Generalizable Geometric Deep Learning Framework for Protein Complex Pose Scoring.
    Wang Z; Brand R; Adolf-Bryfogle J; Grewal J; Qi Y; Combs SA; Golovach N; Alford R; Rangwala H; Clark PM
    ACS Omega; 2024 Feb; 9(7):7471-7479. PubMed ID: 38405499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Effective Approach for Clustering InhA Molecular Dynamics Trajectory Using Substrate-Binding Cavity Features.
    De Paris R; Quevedo CV; Ruiz DD; Norberto de Souza O
    PLoS One; 2015; 10(7):e0133172. PubMed ID: 26218832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motion Tree Delineates Hierarchical Structure of Protein Dynamics Observed in Molecular Dynamics Simulation.
    Moritsugu K; Koike R; Yamada K; Kato H; Kidera A
    PLoS One; 2015; 10(7):e0131583. PubMed ID: 26148295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Task-Specific Scoring Functions for Predicting Ligand Binding Poses and Affinity and for Screening Enrichment.
    Ashtawy HM; Mahapatra NR
    J Chem Inf Model; 2018 Jan; 58(1):119-133. PubMed ID: 29190087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple receptor conformers based molecular docking study of fluorine enhanced ethionamide with mycobacterium enoyl ACP reductase (InhA).
    Khan AM; Shawon J; Halim MA
    J Mol Graph Model; 2017 Oct; 77():386-398. PubMed ID: 28957755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling Molecular Dynamics and Deep Learning to Mine Protein Conformational Space.
    Degiacomi MT
    Structure; 2019 Jun; 27(6):1034-1040.e3. PubMed ID: 31031199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EasyAmber: A comprehensive toolbox to automate the molecular dynamics simulation of proteins.
    Suplatov D; Sharapova Y; Švedas V
    J Bioinform Comput Biol; 2020 Dec; 18(6):2040011. PubMed ID: 32833550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GeneralizedDTA: combining pre-training and multi-task learning to predict drug-target binding affinity for unknown drug discovery.
    Lin S; Shi C; Chen J
    BMC Bioinformatics; 2022 Sep; 23(1):367. PubMed ID: 36071406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational and dynamics changes induced by bile acids binding to chicken liver bile acid binding protein.
    Eberini I; Guerini Rocco A; Ientile AR; Baptista AM; Gianazza E; Tomaselli S; Molinari H; Ragona L
    Proteins; 2008 Jun; 71(4):1889-98. PubMed ID: 18175325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AtomNet PoseRanker: Enriching Ligand Pose Quality for Dynamic Proteins in Virtual High-Throughput Screens.
    Stafford KA; Anderson BM; Sorenson J; van den Bedem H
    J Chem Inf Model; 2022 Mar; 62(5):1178-1189. PubMed ID: 35235748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Boosted neural networks scoring functions for accurate ligand docking and ranking.
    Ashtawy HM; Mahapatra NR
    J Bioinform Comput Biol; 2018 Apr; 16(2):1850004. PubMed ID: 29495922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ensemble-based docking using biased molecular dynamics.
    Campbell AJ; Lamb ML; Joseph-McCarthy D
    J Chem Inf Model; 2014 Jul; 54(7):2127-38. PubMed ID: 24881672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A deep encoder-decoder framework for identifying distinct ligand binding pathways.
    Bandyopadhyay S; Mondal J
    J Chem Phys; 2023 May; 158(19):. PubMed ID: 37184003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An effective self-supervised framework for learning expressive molecular global representations to drug discovery.
    Li P; Wang J; Qiao Y; Chen H; Yu Y; Yao X; Gao P; Xie G; Song S
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 33940598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Machine Learning Approach for the Discovery of Ligand-Specific Functional Mechanisms of GPCRs.
    Plante A; Shore DM; Morra G; Khelashvili G; Weinstein H
    Molecules; 2019 Jun; 24(11):. PubMed ID: 31159491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.