These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 36202759)

  • 21. DeepBindGCN: Integrating Molecular Vector Representation with Graph Convolutional Neural Networks for Protein-Ligand Interaction Prediction.
    Zhang H; Saravanan KM; Zhang JZH
    Molecules; 2023 Jun; 28(12):. PubMed ID: 37375246
    [TBL] [Abstract][Full Text] [Related]  

  • 22. GeneralizedDTA: combining pre-training and multi-task learning to predict drug-target binding affinity for unknown drug discovery.
    Lin S; Shi C; Chen J
    BMC Bioinformatics; 2022 Sep; 23(1):367. PubMed ID: 36071406
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Boosted neural networks scoring functions for accurate ligand docking and ranking.
    Ashtawy HM; Mahapatra NR
    J Bioinform Comput Biol; 2018 Apr; 16(2):1850004. PubMed ID: 29495922
    [TBL] [Abstract][Full Text] [Related]  

  • 24. EasyAmber: A comprehensive toolbox to automate the molecular dynamics simulation of proteins.
    Suplatov D; Sharapova Y; Švedas V
    J Bioinform Comput Biol; 2020 Dec; 18(6):2040011. PubMed ID: 32833550
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Coupling Molecular Dynamics and Deep Learning to Mine Protein Conformational Space.
    Degiacomi MT
    Structure; 2019 Jun; 27(6):1034-1040.e3. PubMed ID: 31031199
    [TBL] [Abstract][Full Text] [Related]  

  • 26. AtomNet PoseRanker: Enriching Ligand Pose Quality for Dynamic Proteins in Virtual High-Throughput Screens.
    Stafford KA; Anderson BM; Sorenson J; van den Bedem H
    J Chem Inf Model; 2022 Mar; 62(5):1178-1189. PubMed ID: 35235748
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ensemble-based docking using biased molecular dynamics.
    Campbell AJ; Lamb ML; Joseph-McCarthy D
    J Chem Inf Model; 2014 Jul; 54(7):2127-38. PubMed ID: 24881672
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Resolving Protein Conformational Plasticity and Substrate Binding via Machine Learning.
    Ahalawat N; Sahil M; Mondal J
    J Chem Theory Comput; 2023 May; 19(9):2644-2657. PubMed ID: 37068044
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phanto-IDP: compact model for precise intrinsically disordered protein backbone generation and enhanced sampling.
    Zhu J; Li Z; Tong H; Lu Z; Zhang N; Wei T; Chen HF
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38018910
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exploring the Conformational Ensembles of Protein-Protein Complex with Transformer-Based Generative Model.
    Wang J; Wang X; Chu Y; Li C; Li X; Meng X; Fang Y; No KT; Mao J; Zeng X
    J Chem Theory Comput; 2024 Jun; 20(11):4469-4480. PubMed ID: 38816696
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A deep encoder-decoder framework for identifying distinct ligand binding pathways.
    Bandyopadhyay S; Mondal J
    J Chem Phys; 2023 May; 158(19):. PubMed ID: 37184003
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predicting improved protein conformations with a temporal deep recurrent neural network.
    Pfeiffenberger E; Bates PA
    PLoS One; 2018; 13(9):e0202652. PubMed ID: 30180164
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Machine Learning Approach for the Discovery of Ligand-Specific Functional Mechanisms of GPCRs.
    Plante A; Shore DM; Morra G; Khelashvili G; Weinstein H
    Molecules; 2019 Jun; 24(11):. PubMed ID: 31159491
    [TBL] [Abstract][Full Text] [Related]  

  • 34. GAABind: a geometry-aware attention-based network for accurate protein-ligand binding pose and binding affinity prediction.
    Tan H; Wang Z; Hu G
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38102069
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pharmacophore generation, atom-based 3D-QSAR, molecular docking and molecular dynamics simulation studies on benzamide analogues as FtsZ inhibitors.
    Tripathy S; Azam MA; Jupudi S; Sahu SK
    J Biomol Struct Dyn; 2018 Sep; 36(12):3218-3230. PubMed ID: 28938860
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ligand binding remodels protein side-chain conformational heterogeneity.
    Wankowicz SA; de Oliveira SH; Hogan DW; van den Bedem H; Fraser JS
    Elife; 2022 Mar; 11():. PubMed ID: 35312477
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An effective self-supervised framework for learning expressive molecular global representations to drug discovery.
    Li P; Wang J; Qiao Y; Chen H; Yu Y; Yao X; Gao P; Xie G; Song S
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 33940598
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protein flexibility and ligand recognition: challenges for molecular modeling.
    Spyrakis F; BidonChanal A; Barril X; Luque FJ
    Curr Top Med Chem; 2011; 11(2):192-210. PubMed ID: 20939788
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Predicting cryptic ligand binding sites based on normal modes guided conformational sampling.
    Zheng W
    Proteins; 2021 Apr; 89(4):416-426. PubMed ID: 33244830
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Self-supervised Pre-training via Multi-view Graph Information Bottleneck for Molecular Property Prediction.
    Zang X; Zhang J; Tang B
    IEEE J Biomed Health Inform; 2024 Jul; PP():. PubMed ID: 38959149
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.