These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 36202763)

  • 1. Selective Biocatalytic N-Methylation of Unsaturated Heterocycles.
    Ospina F; Schülke KH; Soler J; Klein A; Prosenc B; Garcia-Borràs M; Hammer SC
    Angew Chem Int Ed Engl; 2022 Nov; 61(48):e202213056. PubMed ID: 36202763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative
    Hoffmann A; Schülke KH; Hammer SC; Rentmeister A; Cornelissen NV
    Chem Commun (Camb); 2023 May; 59(36):5463-5466. PubMed ID: 37070635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient Transferase Engineering for SAM Analog Synthesis from Iodoalkanes.
    Schülke KH; Fröse JS; Klein A; Garcia-Borràs M; Hammer SC
    Chembiochem; 2024 May; 25(10):e202400079. PubMed ID: 38477872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineered Enzymes Enable Selective N-Alkylation of Pyrazoles With Simple Haloalkanes.
    Bengel LL; Aberle B; Egler-Kemmerer AN; Kienzle S; Hauer B; Hammer SC
    Angew Chem Int Ed Engl; 2021 Mar; 60(10):5554-5560. PubMed ID: 33300646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Tandem Enzymatic sp
    Sadler JC; Humphreys LD; Snajdrova R; Burley GA
    Chembiochem; 2017 Jun; 18(11):992-995. PubMed ID: 28371017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directed Evolution of a Halide Methyltransferase Enables Biocatalytic Synthesis of Diverse SAM Analogs.
    Tang Q; Grathwol CW; Aslan-Üzel AS; Wu S; Link A; Pavlidis IV; Badenhorst CPS; Bornscheuer UT
    Angew Chem Int Ed Engl; 2021 Jan; 60(3):1524-1527. PubMed ID: 33108827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomimetic S-Adenosylmethionine Regeneration Starting from Multiple Byproducts Enables Biocatalytic Alkylation with Radical SAM Enzymes.
    Gericke L; Mhaindarkar D; Karst LC; Jahn S; Kuge M; Mohr MKF; Gagsteiger J; Cornelissen NV; Wen X; Mordhorst S; Jessen HJ; Rentmeister A; Seebeck FP; Layer G; Loenarz C; Andexer JN
    Chembiochem; 2023 May; 24(9):e202300133. PubMed ID: 36942622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From Natural Methylation to Versatile Alkylations Using Halide Methyltransferases.
    Tang Q; Pavlidis IV; Badenhorst CPS; Bornscheuer UT
    Chembiochem; 2021 Aug; 22(16):2584-2590. PubMed ID: 33890381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate Profiling of Anion Methyltransferases for Promiscuous Synthesis of S-Adenosylmethionine Analogs from Haloalkanes.
    Schülke KH; Ospina F; Hörnschemeyer K; Gergel S; Hammer SC
    Chembiochem; 2022 Feb; 23(4):e202100632. PubMed ID: 34927779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methylation of Unactivated Alkenes with Engineered Methyltransferases To Generate Non-natural Terpenoids.
    Aberle B; Kowalczyk D; Massini S; Egler-Kemmerer AN; Gergel S; Hammer SC; Hauer B
    Angew Chem Int Ed Engl; 2023 Jun; 62(26):e202301601. PubMed ID: 36997338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocatalytic C3-Indole Methylation-A Useful Tool for the Natural-Product-Inspired Stereoselective Synthesis of Pyrroloindoles.
    Schneider P; Henßen B; Paschold B; Chapple BP; Schatton M; Seebeck FP; Classen T; Pietruszka J
    Angew Chem Int Ed Engl; 2021 Oct; 60(43):23412-23418. PubMed ID: 34399441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Harnessing methylation and AdoMet-utilising enzymes for selective modification in cascade reactions.
    Michailidou F; Rentmeister A
    Org Biomol Chem; 2021 May; 19(17):3756-3762. PubMed ID: 33949607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetric C-Alkylation by the S-Adenosylmethionine-Dependent Methyltransferase SgvM.
    Sommer-Kamann C; Fries A; Mordhorst S; Andexer JN; Müller M
    Angew Chem Int Ed Engl; 2017 Mar; 56(14):4033-4036. PubMed ID: 28247461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biocatalytic Alkylation Chemistry: Building Molecular Complexity with High Selectivity.
    Ospina F; Schülke KH; Hammer SC
    Chempluschem; 2021 Nov; 87(1):e202100454. PubMed ID: 34821073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic Reagents for Enzyme-Catalyzed Methylation.
    Wen X; Leisinger F; Leopold V; Seebeck FP
    Angew Chem Int Ed Engl; 2022 Oct; 61(41):e202208746. PubMed ID: 35989225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A biocatalytic platform for asymmetric alkylation of α-keto acids by mining and engineering of methyltransferases.
    Ju S; Kuzelka KP; Guo R; Krohn-Hansen B; Wu J; Nair SK; Yang Y
    Nat Commun; 2023 Sep; 14(1):5704. PubMed ID: 37709735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biocatalytic Alkylation Cascades: Recent Advances and Future Opportunities for Late-Stage Functionalization.
    McKean IJW; Hoskisson PA; Burley GA
    Chembiochem; 2020 Oct; 21(20):2890-2897. PubMed ID: 32459052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances in methyltransferase biocatalysis.
    Bennett MR; Shepherd SA; Cronin VA; Micklefield J
    Curr Opin Chem Biol; 2017 Apr; 37():97-106. PubMed ID: 28259085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Synthesis and application of the methyl analogues of
    Wang W; Dong M
    Sheng Wu Gong Cheng Xue Bao; 2023 Nov; 39(11):4428-4444. PubMed ID: 38013176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-Pot Biocatalytic In Vivo Methylation-Hydroamination of Bioderived Lignin Monomers to Generate a Key Precursor to L-DOPA.
    Galman JL; Parmeggiani F; Seibt L; Birmingham WR; Turner NJ
    Angew Chem Int Ed Engl; 2022 Feb; 61(8):e202112855. PubMed ID: 34882925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.